QP Code: 14535

		(3 Hours) [Total Marks	: 8
N.I		1) Question no.1 is compulsory. 2) Answer any three from remaining.	
		3) Figures to the right indicate marks.	(
1.	(a)	Find laplace transform of t ³ cost.	X
	(b)	Find the image of $ z - ai = a$ under the transformation $w = \frac{1}{z}$.	5
	(c) (d)	Construct an analytic function whose real part is e^{2x} (x cos 2y - y sin 2y). Show that the set of functions cos nx n = 1, 2, 3 is orthogonal on $(0, 2\pi)$.	5
2.	(a)	By using Convolution Theorem. Find invese laplace transform of $\frac{1}{s^2(s+1)^2}$.	6
	(b) (c)	Find bilinear transformation that maps the points 2, i, -2 onto the point 1, i, -1. Find Fourier Series for $f(x) = \cos mx$ in $(\pi, -\pi)$ where m is not an integer. Deduce	8
		that $\cos m\pi = \frac{2m}{\pi} \left(\frac{1}{2m^2} + \frac{1}{m^2 - 1^2} + \frac{1}{m^2 - 2^2} + \frac{1}{m^2 - n^2} \right)$ hence show that	
		$\sum_{1}^{\infty} \frac{1}{9n^2 - 1} = \frac{1}{2} - \frac{\pi\sqrt{3}}{18}.$	
3.	(a)	Find Complex form of fourier series $f(x) = e^{3x}$ in $0 < x < 3$.	6
	(b)	Using Crank Nicholoson method solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ subject to $0 \le x \le 1$ $u(0, t) = 0$,	6
	(c)	u(1, t) = 0, $u(x, 0) = 100x(1-x)$ taking $h = 0.25$ in one step. Using laplace transform solve $(D^2+2D+5)y = e^{-t}$ sint when $y(0) = 0$ and $y'(0) = 1$.	8
4.	(a)	Evaluate $\int f(z)dz$ along the Parabola $y = 2x^2$ from $z = 0$ to $z = 3 + 18i$ where	6
	(b)	$f(z) = x^2 - 2iy$ Find half range cosinc series for	6
	0	$f(x) = x \qquad 0 < x < \frac{\pi}{2}$ $= \pi - x \frac{\pi}{2} < x < \pi$	
6		-n-x /2 x x n	

GN-Con.:6443-14.

Obtain two distinct Laurent's series of f(z) =

[TURN OVER

- 5. (a) By using Bender Schmidt method solve $\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$ f(0, t) = f(5, t) = 0. 6 $f(x, 0) = x^2 (25 x^2)$ find f in range taking h = 1 and upto 5 seconds.
 - (b) Evaluate $\int_{0}^{\infty} e^{-t} \frac{\sin^2 t}{t} dt$.
 - (c) Evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 4\cos \theta} d\theta.$
- 6. (a) A string is stretched and fastened to two points distance ℓ apart, motion is started by displacing the string in the form $y = a \sin\left(\frac{\pi x}{\ell}\right)$ from which it is released at time t = 0. Show that the displacement of a point at a distance x from one end at a distance x from one end at time t is given by $y(x,t) = a \sin\left(\frac{\pi x}{\ell}\right) \cos\left(\frac{\pi ct}{\ell}\right)$.
 - (b) If f(z) = u + iv is analytic and $u v = e^x (\cos y \sin y)$ find f(z) in terms of z.
 - (c) Evaluate:

L-1 (2 tanh-1 s)

$$L^{-1}\left[\frac{s}{(s-2)^6}\right]$$

GN-Con.:6443-14.