	Time: 3 Hours	Marks: 80
N.B.:		
1. Q.1. i	is compulsory	2 2 2 0 0 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4
2. Solve	e any three questions out of remaining questions	\$ FM \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Q1 (a)	Compare between Power Signal & Energy Signal	(5 marks)
(b)	Obtain Discrete Time Fourier Transform of following signal, $x(n) = (2)^n u(n)$	(5 marks)
(c)	Check whether following systems are Static, Time Invariant, Linear, Causal, & Stable: i) y(t) = x(t)cost	(5 marks)
(d)	ii) $y(t) = \cos[x(t)]$ Sketch Double Sided Spectrum of following signal: $x(t) = 20 \sin(2 \pi t + 45^{\circ}) - 8 \cos(6 \pi t + 120^{\circ})$	(5 marks)
Q 2 (a)	Verify whether the following continuous time signals are periodic. If periodic, determine the fundamental period:	(10 marks)
(b)	i. $x_1(t) = \sin (15 \pi t)$; ii. $x_2(t) = \sin (20 \pi t)$; iii. $x(t) = x_1(t) + x_1(t)$ Sketch the following signal with respect to time: x(t) = u(t) - r(t-1) + 2 r(t-2) - r(t-3) + u(t-4) - 2 u(t-5)	(10 marks)
Q3 (a)	For the given function, $X(s) = \frac{4s}{s^2 + 2s + 1}$. Using only the properties of Laplace Transform, Find the following:	(10 marks)
(b)	i. x(t)* u (t) A Continuous Time LTI System is initially relaxed and is represented by the differential equation: y''(t) + 3 y'(t) + 2 y(t) = 2 x(t) Find the following: i. Transfer Function of the system ii. Impulse Response of the system	(10 marks)
Q4(a)	iii. System Response for an input, $x(t) = 4e^{-3t}u(t)$ Determine the initial value and final value of a signal for the function, $X(z) = \frac{2z^2 + 0.25}{(z + 0.25)(z - 1)}$	(10 marks)

(b) An causal LTI system is described by the following difference equation: (10 marks)

$$y\left(n\right) = \ -\frac{3}{4}\,y\left(n-1\right) + \ x(n) \quad - \ x\left(n-1\right)$$

Determine the following:

- i) System Function
- ii) Pole Zero Plot
- iii) Impulse Response
- iv) Comment on system stability
- Q 5 (a) Obtain the Exponential Fourier Series of following rectangular pulse train: (10 marks)

(b) Obtain the Fourier Transform of a dc signal

- **(05 marks)**
- (c) Obtain the Discrete Time Fourier Transform of following:
- (05 marks)

$$x(n) = -(\alpha)^n u(n)$$

- Q 6 (a) The impulse response of an LTI System is given by, $h(t) = e^{-2t} u(t)$. (10 marks) Then find the Step Response of the system.
 - (b) If Fourier Transform of a signal, x(t), is X(F), Then, Prove that, (10 marks)

$$\frac{d}{dt}x(t) \leftarrow \xrightarrow{F,T} j2 \pi f X(f)$$