7/11/2015 - SE seen III (CBGS) - Mechtonics-Theramore

QP Code: 5145

(3 Hours)

[Total Marks: 80

N. B.:

1. Question no.1 is compulsory.

2. Attempt any THREE from question no. 2 to 6.

3. Use illustrative diagrams wherever required.

Q1)		Attempt ANY FOUR	
5	a)	Intensive and Extensive properties with examples	•
*	XX	Explain the principle of impulse turbine	03
•	(4)	List the advantage of impulse turbine	05
	c)	List the advantages and disadvantages of a two stroke cycle engine over a four stroke one.	05
	9	What is 'Fourier's law of conduction'? State also the assumptions on which this law is based.	05
	e)//	What do you mean by 'fouling' in heat exchangers?	05
Q2)	a)/	For transient heat conduction, with negligible internal resistance with usual notations show that,	10
		$\theta/\theta_i = \exp(-Bi.Fo)$	
	by	Explain the characteristic features of a fire tube boiler. How is it different from a water-tube boiler?	05
	8	Draw a neat boiling curve for water and mark the different regions.	Û5
Q3)	a)	In a gas turbine plant working or the Brayton cycle, the air at inlet is at 0.1 MPa and 27°C. The pressure ratio is 6.25 and the maximum temperature is 800°C. The turbine and compressor efficiencies are each 80%, find:	10
		i. Compressor work eer kg of air.	
		ii. Turbine work per kg of air	J
		iii. Heat supplied per kg of air and	
		iv. Cycle efficiency	
	b)	A hot square plate, 50cm x 50cm, at 100°C is exposed to atmospheric air at	10
	1	20°C. Find the heat loss from both the surfaces of the plate:	10
d		i. If the plate is kept vertical	
		ii. If the plate is kept horizontal .	
		Properties of air at mean temperature of 60°C are given below.	
	(8)	$0 = 1.06 \text{kg/m}^3 \text{cn} = 1.000 \text{kWee} \text{W} = 10.07 \text{sec}$	

 $\rho = 1.06 \text{ kg/m}^3$, cp = 1.008 kJ/kg K, $v = 18.97 \times 10^{-6} \text{ m}^2/\text{s}$, k = 0.028 W/mK

Following empirical relations can be used: Case (i): Nu = 0.13x (Gr.Pr) 1/3

Case (ii): Nu = 0.71x (Gr.Pr) ^{1/4} for the upper surface, and Nu = 0.35x (Gr.Pr) ^{1/4} for the lower surface

Q4)	3)	Prove that heat absorbed or rejected during a polytropic process for an ideal ga	as (
		is given by: $(1-2) = (\gamma - n / \gamma - 1) W_{1-2}$	2.
	b)	Explain or describe the working of 4-stroke SI engine.	
02.161	c) ,	A wire of 8mm diameter at a temperature of 60° is to be insulated by a material having $k = 0.174$ W/m°C. Heat transfer coefficient on the outside, $h_a = 8$ W/m². Ambient temperature, $T_a = 25^{\circ}$ C. For maximum heat loss, what is the minimum thickness of insulation and the heat loss per meter length? Find the increase in heat dissipation due to insulation	K.
Q5)	a)	Write the steady flow energy equation and apply it to: i. Nozzle ii. Throttling device iii. Turbine	08
	b) ့	iv. Compressor A gas engine working on otto cycle has a cylinder diameter 20cm and stroke of 25 cm. The clearance volume is 1570 cm ³ . Find air standard efficiency. Assume Cp = 1.004 kJ/kgK and CV = 0.717 kJ/kgK	06
	c)	Derive expression for LMTD for counter flow type heat exchanger	06
Q6)	a)	A flat plate, 1m wide and 1.5m long is maintained at 90°C in air with a free stream temperature of 10°C, flowing ziong 1.5m side of the plate. Determine the velocity of air required to have a rate of energy dissipation as 3.75 kW.	10
00/2	/	Use correlations: Nu _L = 0.664 (Re) ^{0.5} (Pr) ^{1/3} for laminar flow, and Nu _L = [0.036 Re ^{0.8} - 836] Pr ^{-1/3} for Turbulent flow Take the average properties of air at 50°C:	
12		$\rho = 1.0877 \text{ kg/m}^3$, cp = 1.007 kJ/kg K, $\mu = 2.029 \text{ x } 10^{-5} \text{ kg/ms}$, $k = 0.028 \text{ W/mK}$, $Pr = 0.703$	*
	b)	Describe super heater, economizer and air preheater with neat sketches. Alex	10