[Time: Three Hours]

2. Solve any three questions from remaining five questions.

1. Question.No.1 is compulsory.

N.B:

Please check whether you have got the right question paper.

3. Draw neat diagrams and assume suitable data wherever necessary. Justify you

Q.P. Code :25127

[Marks:80]

		assumptions.	
			55
Q.1	Attemp	ot any four:	20
	a)	Differentiate between sequential and combinational circuits.	
	b)	Convert SR flip-flop into T flip-flop.	
	c)	Explain Fan in, Fan out, Noise Margin, Propagation Delay, Power dissipation concepts of digital IC.	
	d)	Implement 16:1 MUX using 8:1 MUX.	
	e)	Explain stuck at '0' & stuck at '1' fault model.	
Q.2	a)	Write a VHDL code to design 2:4 decoders.	10
	b)	Design a implement full adder using IC 74138 (3:8 decoder)	10
Q.3	a)	What are the different types of memories available in digital electronics? Explain with one application each.	10
	b)	Design circuit with optimum utilization of PAL to implement following function	10
		$F1(W, X, Y, Z) = \sum_{i} m (1,3,4,6,9,11,12,14)$ $F2(W, X, Y, Z) = \sum_{i} (1,3,4,6,9,11,12,14,15)$ $F3(W, X, Y, Z) = \sum_{i} m (2,3,8,9,12,13)$	
		$F2(W,X,Y,Z) = \sum (1,3,4,6,9,11,12,14,15)$	
		$F3(W,X,Y,Z) = \sum_{i} m(2,3,8,9,12,13)$	
Q.4	a)	Design Mealy type sequence detector to detect a serial i/p "101"	10
	(b)	Design and explain Parallel In Serial Out Shift Register.	10
Q.5	a)	Write short note on Boundary Scan.	05
	b)	Design 4 bit synchronous up counter using JK FF.	10
NO.			05

Q.P. Code :25127

c) Eliminate redundant states & draw reduced state diagram:

PS	N	OP OP	
	X=0	X=1	
Α	В	C S	38180
В	D	Fellow	
С	F	Ē	2000 B
D	В	G G S	7.7.010.00
E	F	\$ 0 C 6 7 8	
F	E &	D C 6	00
G	F	O G POC	

Q.5 Write short note on: (solve any three)

- a) XC 4000 FPGA architecture
- b) 2 i/p TTL NAND gate
- c) De-Morgan's Theorem
- d) JK FF & D FF

Page **2** of **2**