Q. P. Code: 37068

Time Duration: 3Hr

Total Marks: 80

2) Attempt any three questions from Q.2to Q.6.3) Use of statistical tables permitted.	RAIGH	Maximum Marks
4) Figures to the right indicate full marks. Evaluate $\int_C z dz$, where C is the left half of unit circle	z = 1 from $z = -i$ to $z = i$.	[5]
If $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$, then find the eigen values of $4A^{-1} + 3A$	+ 21 .	[5]

c)	If the tangent of the angle made by the line of regression of y on x is 0.6 and	[5]
	$\sigma_y = 2 \sigma_x$, find the correlation coefficient between x and y.	
d)	Construct the dual of the following L.P.P.	[5]

Minimise	$z = x_2 + 3x_3$
Subject to	$2x_1 + x_2 \le 3$
	$x_1 + 2x_2 + 6x_3 \ge 5$
	$-x_1+x_2+2x_3=2$
	r r r > 0

Q1. a)

b)

Q2. a) Evaluate
$$\int_C \frac{e^{2z}}{(z+1)^4} dz$$
, where c is the circle $|z-1|=3$.

b) Show that the matrix
$$A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & 4 \end{bmatrix}$$
 is derogatory. [6]

c) For a normal variate with mean 2.5 and standard deviation 3.5, find the probability that (i)
$$2 \le X \le 4.5$$
, (ii) $-1.5 \le X \le 5.3$.

Q3. a) The daily consumption of electric power is a random variable X with probability distribution function
$$f(x) = \begin{cases} kxe^{-\frac{x}{3}}, x > 0\\ 0, x \le 0 \end{cases}$$

Find the value of k, the expectation of k and the probability that on a given day the electric consumption is more than expected value.

b) Solve the following L.P.P. by simplex method

Maximise
$$z = 4x_1 + 10x_2$$

Subject to $2x_1 + x_2 \le 10$
 $2x_1 + 5x_2 \le 20$
 $2x_1 + 3x_2 \le 18$
 $x_1, x_2 \ge 0$

c) Expand
$$f(z) = \frac{2}{(z-1)(z-2)}$$
 in the regions (i) $|z| < 1$ (ii) $1 < |z| < 2$ (iii) $|z| > 2$. [8]

	di i di i di		ourrenne mon	tire disease.			
b)	Calculate the o	coefficient of c	correlation betw	veen X and Y	from the follo	wing data.	[6]
	V	2	5	1	6	2	

	Y	3		4		5	2		6	
c)	Show that the	matrix A =	-9 -8 -16	4 3 8	4 4 7	is diagonaliz	zable. Fir	nd the	transforming	[8]

matrix M and the diagonal form D.

[6]

- **Q5.a)** Can it be concluded that the average life- span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with standard deviation 8.9 years?
- [6]

b) Evaluate $\int_0^{2\pi} \frac{d\theta}{3+2\cos\theta}$, using Cauchy's residue theorem.

[6]

c) Using the Kuhn – Tucker conditions, solve the following N.L.P.P.

[8]

Maximise
$$z = x_1^2 + x_2^2$$

Subject to $x_1 + x_2 - 4 \le 0$
 $2x_1 + x_2 - 5 \le 0$
 $x_1, x_2 \ge 0$

Q6.a) A die was thrown 132 times and the following frequencies were observed.

[6]

No obtained	1	2	3	4	5	6	Total
Frequency	15	20	25	15	29	28	132

Test the hypothesis that the die is unbiased.

b) Two independent samples of sizes 8 and 7 gave the following results.

[6]

Sample 1	19	17	15	21	16	18	16	14
Sample 2	15	14	15	19	15	18	16	

Is the difference between sample means significant?

b) Using Penalty (Big-M) method solve the following L.P.P.

[8]

Maximise
$$z = 3x_1 - x_2$$

Subject to $2x_1 + x_2 \le 2$
 $x_1 + 3x_2 \ge 3$
 $x_2 \le 4$
 $x_1, x_2 \ge 0$

ALL THE BEST!