Q. P. Code: 37823

Time: 3 Hours Total Marks: 80

- N. B. 1) Question No. 1 is compulsory (Any Four).
 - 2) Answer any 3 questions from the remaining 5 questions.
 - 3) Assume suitable data wherever necessary.
- Q1 (a) Write a short note on zero crossing detector.
 - (b) Describe the term loading effect with suitable example.
 - (c) The resistors in a bridge are given by R1=R2=R3=120 Ω and R4 = 121 Ω . If the supply voltage is 10V. Find the offset voltage.
 - (d) Draw and explain Sample and Hold circuit.
 - (e) Design a $\pm 12V$ power supply using IC 78xx.
- Q2 (a) Define multivibrator? Explain a stable multivibrator using IC 555 and also design a stable 20 multivibrator for 50% duty cycle.
 - (b) Draw and explain circuit for ideal integrator with waveforms. Discuss the problems associated with ideal integrator and draw the circuit diagram for practical integrator.
- Q3 (a) A thermistor is to monitor room temperature. It has a resistance of 3.5 K Ω at 20°C with a slope of -10%/°C. The dissipation constant is $P_D=5mW$ /°C. It is proposed to use the thermistor in the divider as shown below to provide a voltage of 5.0V at 20°C. Evaluate the effect of self-heating. ($R_2=$ Thermistor; $R_1=3.5$ K Ω)

- (b) Draw and explain the principle and construction of metal strain gauges. What is the signal conditioning associated with it.
- Q4 (a) Explain successive approximation analog to digital converter. Find ADC output for a 4- 20 bit converter to a 2.87V input, if the reference is 5V.
 - (b) Design a second order high pass filter for cutoff frequency equal to 1.5 KHz.
- Q5 (a) A potentiometric displacement sensor is to be used to measure work-piece motion from 0 to 10 cm. The resistance changes linearly over this range from 0 to $1 \text{K}\Omega$.

 Develop signal conditioning to provide a linear, 0- to 10-V output.
 - (b) Explain the absolute value circuit with labelled circuit diagram and its waveform.
- Q6 (a) Draw and explain the principle and construction of RTD. What is the signal conditioning associated with it.
 - (b) Phase Locked loop
 - (c) SMPS 5
