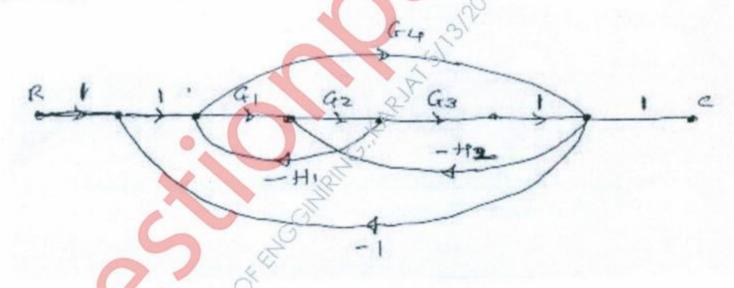
13-05-16

Q.P. Code: 551102

551102 * EXAM


20

(3 Hours)

Total Marks : 8

N.B.: (1) Question No. 1 is compulsory

- (2) Attempt any three questions out of remaining five questions
- (3) Assume Suitable data, if necessary
- (4) Figure to the right indicated full marks
- 1. Attempt any four
 - (a) Compare openloop and closed loop system
 - (b) Explain Regenrative feedback
 - (c) Explain the principle of superposition
 - (d) Explain co-rrelation between time and frequency response
 - (e) What is the errect of adding zeros to the system
- 2. (a) Obtain the overall transfer function C/R from the signal flow graph 10 shown in figure.

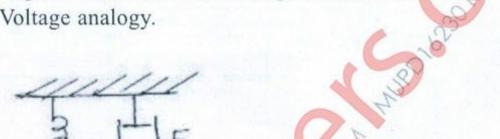
(b) A unity feedback control system has a open loop transfer function

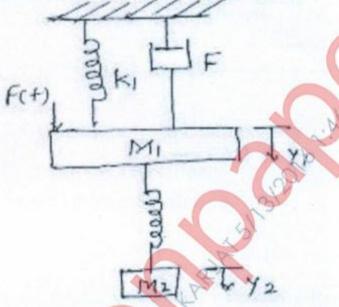
G(s) = $\frac{k}{s(s^2+4s+13)}$ sketch the rootlocus plot of a system. Find the value of K and frequency at which the root loci cross the jw axis.

TURN OVER

10

Q.P. Code: 551102


2


3. (a) Sketch the bode plot and determine the gain cross over frequency for the transfer function given below.

10

$$G(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$$

Write the differential equations governing the behaviour of mechanical system shown in figure. Also obtain an analogous electrical circuit based on Force-Voltage analogy.

The characteristic equations for a certain feedback control systems (a) are given below. Determine the range of values of K for the system to be stable.

10

(i)
$$s^4 + 22s^3 + 10s^2 + 2s + k = 0$$

(ii)
$$s^4 + 12s^3 + 69s^2 + 198s + (20+k) = 0$$

The closed loop transfer function of the second order system is (b)

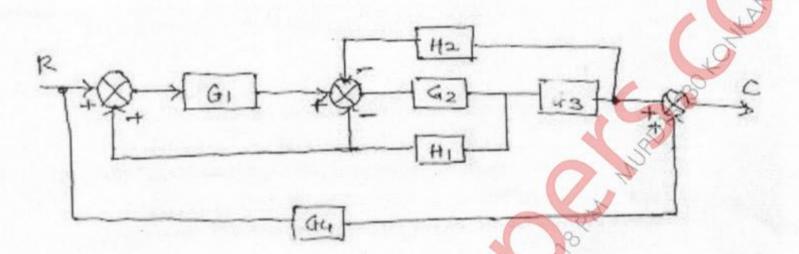
10

$$\frac{C(s)}{R(s)} = \frac{c}{s^2 + 2\xi wns + wn^2}$$
 obtain the equation for the output response

- c(t) for unit step input for under damped
- 5. (a) Sketch the polar plot of the transfer function given below 10

$$G(s) = \frac{1}{(1+s)(1+2s)}$$

[TURN OVER



5

5

3

- (ii) Define the gain margin and phase margin
- (b) Using the block diagram reduction techniques, find the closed loop transfer function of the system given below.

- 6. (a) (i) Explain the dominant condition
 - (ii) Explain Nyquist stability criterion.
 - (b) A unity feedback system has a transfer function $G(s) = \frac{25}{s(s+8)}$ 10 Determine damping ratio, peak overshoot Rise time and settling time.