SE(IX) / Inst. / 19-05-14

Feedback Control System.

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three from questions from remaining questions.
- (3) Assume suitable data.
- 1. Attempt any four :-

20

- (a) Compare: open loop and close loop system with examples.
- (b) Define gain and phase margin of system also comment on stability of system based on the gain and phase margin.
- (c) Explain Force voltage and force current analogy.
- (d) Explain stable, unstable, critically stable and relatively stable system.
- (e) Find out transfer function of given network.

2. (a) Using block diagram reduction technique find the close loop transfer of the system, 10

(b) Test the stability for following :-

10

- (i) $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 15 = 0$.
- (ii) $S^8 + 5S^6 + 2S^4 + 3S^2 + 1 = 0$.

[TURN OVER

3. (a) Find the transfer function using mason's gain formula.

(b) For a system having $G(s) = \frac{15}{(s+1)(s+3)}$; H(s) = 1

Determine:

- (i) Characteristics equation
- (ii) Wn and &
- (iii) Time at which first undershoot will occur
- (iv) Time period of oscillations
- (v) No. of cycles output will per form, before settling down.
- 4. (a) Draw the root locus plot for a system with $G(s) H(s) = \frac{k}{s(s+2)(s+6)(s+10)}$. 10
 - (b) Draw the equivalent mechanical system of the given system. Write the 10 set of equilibrium equation for it and obtain electrical analogy circuit using (i) F-V analogy (ii) F-I analogy.

3

QP Code: NP-19685

10

- 5. (a) For a perticular unity feedback system $G(s) = \frac{242 (s+5)}{s(s+1) (s^2 + 5s + 121)}$ sketch the 10
 - bode plot. Find W_{gc} and W_{pc}, GM, PM, commenton stability.

 (b) For unity feedback system having openloop transfer function –

$$G(s) = \frac{14(s+3)}{s(s+5)(s^2+2s+2)}$$

Determine :-

- (i) Type and order of the system
- (ii) Error coefficient
- (iii) Steady state-error for input $1+4t+\frac{t^2}{2}$.
- 6. (a) Sketch the polar plot and discuss the stability of the system reporesented 10

$$G(s) \cdot H(s) = \frac{k}{s(s+1)(s+5)}$$

(b) State and explain nyquist stblity theorem and its criteria.