Paper / Subject Code: 41103 / Feedback Control System

S.E.(Instrumentation Engineering)(SEM-IV)(Choice Based) / Dec.2019/11.12.2019

(3 Hours)

(Total Marks: 80)

Instructions:

- · Q. No.1 is compulsory.
- · Answer any Three out of remaining Five questions.
- · Assumptions made should be clearly stated.
- Assume any suitable data wherever required but justify the same.
- · Figure to the right indicate gets full marks.
- Illustrate answers with sketches wherever required.

(20)

1. Attempt any four.

 Explain the development of automatic control systems and classification of the control system with examples.

- b. Derive the transfer function in canonical form of close loop system?
- Define Gain and Phase margin of system.
 Also comment on stability of system based on GM and PM.
- Describe time domain specifications.
 Define all with their mathematical expression.
- e. Classify the feedback control system based on
 - i. Nature
 - ii. Time
 - iii. Time behavior
 - iv. Deterministic and stochastic
 - v. Number of inputs and outputs
 - vi. Feedback and feed forward system
- 2. a. Examine unity feedback system having open loop transfer function

(10)

$$G(s) = \frac{k(s+1)}{s(s^3+7s^2+12s)}$$

Find:

- i. Type of system,
- ii. Error coefficients,
- iii. Steady state error when input to the system is $\frac{R}{2}t^2$.
- b. Derive transfer function for following block diagram

(10)

3. a. Solve following SFG and find transfer function.

(10)

77488

Page 1 of 2

Paper / Subject Code: 41103 / Feedback Control System

b. For a control system shown below, find the values of K₁ & K₂ so that M_p= 25% and T_p= (10) 4sec. Assume unit step input.

A unity feedback control system has an open loop transfer function. Construct the root locus plot of the system. Find the value of k and frequency at which the root loci cross the jω axis. Comment on stability of the system.

$$G(s) = \frac{k}{s(s^2 + 10s + 24)}$$

b. The characteristics equations for a certain feedback control system are given below. (10) Evaluate the range of values of k for the system to be stable.

i.
$$s^4 + 23s^3 + 8s^2 + 3s + k = 0$$

ii.
$$s^4 + 7s^3 + 10s^2 + ks + k = 0$$

 a. Construct a bode diagram of an open loop transfer function G(s). Determine GM, (10) PM, ω_{gc}, ω_{pc}. Comment on stability of the system.

$$G(s)H(s) = \frac{10(s+2)}{s(s+0.5)(s+10)}.$$

b. A unity feedback system has open-loop transfer function (10)

$$G(s) = \frac{1}{s(2s+1)(s+1)}$$

Sketch Nyquist plot for the system and from there obtain the gain margin and the phase margin.

- a. Explain force voltage and force current analogy.
 - Evaluate the differential equation for the mechanical system.
 Obtain the analogues electrical network based on the force voltage analogy.

