QP Code :12515

(3 Hours)

[Total Marks:80

N.	B.: (1) Question no 1 is compulsory.	
• 1•	(2	A STATE OF	
	(3		20
		(* (EXAM)*	
1.	Solve	any five :-	
	(a)	Compare AM and FM.	
	(b)	Derive power relations for A.M. Signals.	
	(c)	Write note on RF telemetry.	
	(d)	Explain effect of noise in FM modulation.	
	(f)	What is modulation? why it is necessary.	
2.	(a)	Explain any one method of F.M. generation with the heip of neat diagram and	10
		wave forms.	
	(b)	Explain ASK and PAK methods with suitable block diagrams and equations.	10
	1		
3.	(a)	Explain multiplexing schemes TDM and FDM in detail and compare them.	10
	(b)	Explain briefly:—	10
		(i) Voltage Telemetry	
		(ii) Current Telemetry	
		(iii) Position Telemetry	
4.	(a)	An FM canave is represented by the following:—	10
		$V_{FM} = 10 \sin [5 \times 10^8 t + 4 \sin 1250 t]$	
		find - (i) Carrier and modulating frequencies.	
		(ii) Modulation index and maximum deviation.	
		(iii) Power dissipated by this FM in a 5Ω resistor.	
		(iv) Band width of FM using Carlson rule.	
4.	(b)	Classify and explain various noise sources that affect communication, and derive	10
		Friss formula for total noise factor.	
_			
5.	(a)	Explain Differential pulse-code modulation (DPCM) in detail.	10
	(b)	Discuss phase shift method for SSB generation.	10
,	YY 7		1/
0.	100	short notes on any four :—	10
	(a)	Preemphasis and deemphasis.	
1	(b)	Quntisation noise in PCM.	
	(c)	Superheterodyne Receivers. Sampling techniques	

GN-Con.:10584-14.

Delta modulation.