

Q.P. Code: 13607

(3 Hours)

[Total marks: 80

- Note :-
- 1) Question number 1 is compulsory.
- 2) Attempt any **three** questions from the remaining **five** questions.
- 3) Figures to the right indicate full marks.
- Q.1 a) Find the Laplace transform of $\cos t \cos 2t \cos 3t$.

05

b) Construct an analytic function whose real part is $e^x \cos y$.

05

c) Find the directional derivative of $\emptyset = x^4 + y^4 + z^4$ at point A(1, -2, 1) in the direction of AB where B is (2, 6, -1).

05

d) Expand $f(x) = lx - x^2$, 0 < x < l in a half-range sine-series.

05

Q.2 a) Find the angle between the normals to the surface $xy = z^2$ at the points

06

(1,4,2), (-3,-3,3).

06

b) Find the Fourier series for $f(x) = \begin{cases} -c & -a < x < 0 \\ c, & 0 < x < a \end{cases}$

00

c) Find the inverse Laplace transform of

08

(i) $\frac{4s+12}{s^2+8s+12}$

U

- (ii) $\log\left(\frac{s^2 + a^2}{\sqrt{s+b}}\right)$
- Q. 3

State true or false with proper justification "There does not exists an analytic function whose real part is $x^3 - 3x^2y - y^3$.

b)

a)

Prove that $J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right).$

06

06

c) Expand $f(x) = 4 - x^2$ in the interval (0, 2).

08

Use Gauss's Divergence theorem to evaluate $\iint_S \overline{N} \cdot \overline{F} dS$ where $\overline{F} = 4x i + 3y j - 2z k$ and S is the surface bounded by

06

x = 0, y = 0, z = 0 and 2x + 2y + z = 4.

TURN OVER

- b) Prove that $\int x^3 \cdot J_0(x) \, dx = x^3 \cdot J_1(x) 2x^2 \cdot J_2(x).$
- Solve using Laplace transform $\frac{dy}{dt} + 3y = 2 + e^{-t}$ with v(0) = 1.
- Q. 5 a) Find Laplace transform of $(1 + 2t 3t^2 + 4t^3)H(t 2)$ where $H(t 2) = \begin{cases} 0, & t < 2 \\ 1, & t \ge 2 \end{cases}$
 - b) Prove that $2J_0''(x) = J_2(x) J_0(x)$.
 - c) Obtain complex form of Fourier Series for $f(x) = e^{ax}$ in $(-\pi, \pi)$ 08 where a is not an integer. Hence deduce that when α is a constant other than an integer

$$\sin \alpha x = \frac{\sin \pi \alpha}{i\pi} \sum \frac{(-1)^n n}{(\alpha^2 - n^2)} e^{inx}$$

- Q. 6 a) Using Green's theorem evaluate $\oint_C (e^{x^2} xy) dx (y^2 ax) dy$ where C is the circle $x^2 + y^2 = a^2$.
 - b) Express the function $f(x) = \begin{cases} 1 & for |x| < 1 \\ 0 & for |x| > 1 \end{cases}$ as a Fourier Integral.
 - c) Under the transformation w = (1 + i)z + (2 i), find the region in the w -plane into which the rectangular region bounded by x = 0, y = 0, x = 1, y = 2 in the z -plane is mapped.

xxx xxx