Paper / Subject Code: 51501 / Applied Mathematics-III

S.E. SEM III / INST / CHOICE BASED / NOV 2019 / 14.11.2019

* EXAM *

(3 Hours)

Total Marks: 80

Note:-

- 1) Question number 1 is compulsory.
- Attempt any three questions from the remaining five questions.
- 3) Figures to the right indicates full marks

Q.1	a)	Evaluate Laplace transform of t e3t sin4t	05
	b)	Find half range fourier sine series for x^2 in $(0,\pi)$	05
	c)	Find the directional derivative of $4xz^2 + x^2yz$ at $(1,-2,-1)$ in the direction of $2\bar{\imath} - \bar{\jmath} - 2\bar{k}$	05
	d)	Find k such that $\frac{1}{2}\log(x^2+y^2)+i \tan^{-1}\left(\frac{kx}{y}\right)$ is analytic	05
Q.2	a)	Show that the function is Harmonic and find it's conjugate $u = e^{2x}(x\cos 2y - y\sin 2y)$	06
	b)	Evaluate $L^{-1}\left[\frac{S^2}{(s^2+9)(s^2+4)}\right]$, using convolution theorem	06
	c)	Verify Green's theorem in the plane for $\int_C (xy + y^2)dx + x^2dy$, where C is the region bounded by the curves $y = x$ and $y = x^2$	08
Q.3	a)	Solve $(D^2 + 2D + 1)y = 3te^{-t}$, $y(0) = 4$, $y'(0) = 2$ by using Laplace transform.	06
	b)	Show that $\overline{F} = (4xy + 3x^2z)\overline{\imath} + (2x^2 - 2z)\overline{\jmath} + (x^3 - 2y)\overline{k}$ is conservative. Find the work done in moving a particle from $A(1,0,1)$ to $B(2,1,1)$.	06
	c)	Find the Fourier series for the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le x$	08
		2π . Hence deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$	
Q.4	a)	Obtain the Fourier Series of $x\cos x$ in $(-\pi,\pi)$	06
	b)	Find the bilinear transformation which maps the points $z = i, -1, 1$ onto the points $w = 0, 1, \infty$	06
	c)	Evaluate i. $L^{-1}[tan^{-1}\left(\frac{\alpha}{s}\right)]$ ii. $L^{-1}\left[\frac{e^{-\pi s}}{s^2-2s+2}\right]$	08
Q.5	a)	Evaluate $\int_0^\infty e^{-t} \left[t \int_0^t e^{-4u} \cos u du \right] dt$	06
	b)	Show that under the transformation $w = \frac{z-i}{z+i}$, real axis in Z-plane is mapped onto the circle $ w = 1$	06
	c)	Find the Fourier expansion of $f(x) = x^2$ in $(0, a)$. Hence deduce that $\frac{\pi^2}{-3} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$	08
		many other many other many other many	

- Q.6 a) Find the orthogonal trajectories of the family of curves x² y² + x = c
 b) Find the Fourier cosine integral representation of the function
 - Find the Fourier cosine integral representation of the function $f(x) = \begin{cases} 1 x^2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$ Hence evaluate $\int_0^\infty \left(\frac{x \cos x \sin x}{x^3}\right) \cos \frac{x}{2} dx$

06

Evaluate by using Gauss Divergence theorem $\iint_S \overline{N} \cdot \overline{F} \, ds$, where $\overline{F} = 4x\overline{\iota} + 3y\overline{\jmath} - 2z\overline{k}$. S is the surface bounded by x=0, y=0. Z=0 and 2x + 2y + z = 4.
