Paper / Subject Code: 51505 / Electrical Network and Measurement

S.E.(Instrumentation Engineering)(SEM-III)(Choice Base)/Nov 2019 / 26.11.2019

[Marks:80]

20

N.B: 1. Question.No.1 is compulsory.

2. Attempt any three questions from remaining five questions.

[Time: Three Hours]

- 3. Assume suitable data wherever necessary.
- Attempt the following:

Find the value of I1

b In the given network the switch is closed at t= 0. With zero current in the inductor find i, $\frac{dl}{dt}$, at t= 0⁺

- c What are the advantages of an A.C. Bridge?
- d Obtain pole-zero plot of the following function

$$F(s) = \frac{s(s+2)}{(s+1)(s+3)}$$

- a Explain construction and working of D'Arsonaval Galvanometer.
 - 10 10
 - b Test whether polynomial is Hurwitz;
 - i) $P(s)=s^4+s^3+5s^2+3s+4$
 - ii) $P(s)=s^5+3s^3+2s$
- State how you will derive the expression for frequency in case of Wien Bridge. 10
 - Explain construction and working of PMMC instrument.

10

10

Find Thevenin's equivalent network

TURN OVER

2

b In the network shown in fig. At t=0, the switch is opened. Calculate v, $\frac{dv}{dt}$ at t=0+

5 a Obtain ABCD parameters for the network shown in fig.

10

b In the network shown below determine Va and Vb.

10

6 a What are Q meters and how do they work?

10

b For the network shown below, calculate the maximum power that may be dissipated in load resistor R_L 10

