N.B.

- 1. Q.1 is compulsory. Attempt any three from the remaining questions.
- 2. All questions carry equal marks.
- 3. Figures to the Right indicate full marks.
- 3. Assume suitable data if necessary

Q.1 Attempt any four

20

- a. Perform the following arithmetic operations-
 - (i) Multiply $(10101)_2$ and $(11)_2$.
 - (ii) Add $(1101)_2$ from $(1001)_2$.
- b. What are priority encoders? Explain their usage in detail.
- c. Design 32:1 Decoder using 8:1 Decoder and suitable gates.
- d. Explain working of JK flip-flop.
- e. Simplify the given expression $(A+B)(\overline{A}(\overline{B}+\overline{C}))+\overline{A}(B+C)$.
- f. Encode the following binary words into even parity Hamming code.
 - (i) 1110 (ii) 1001.

Q.2 A. Simplify the following function using Quine-McCluskey technique:

10

$$f(A, B, C, D) = \sum m(1, 4, 8, 12, 13)$$

B. Explain working of Bi-directional universal shift register.

10

- Q.3 A. Explain the difference between synchronous and asynchronous counters by giving 10 suitable examples.
 - B. Design a 4-bit ripple counter.

10

- Q.4 A. Explain and construct Look Ahead Carry Generator.
 - B. Simplify the following boolean expression using Karnaugh Map method:

10 10

$$Y = \prod M(1, 2, 3, 8, 9, 10, 11, 14) * d(7, 15)$$

Q.5 A. Design a Mod-5 synchronous counter.

10

B. Explain Hazards in combinational circuits.

10

Q.6 Write short notes on the following

20

- a. Comparison of features of TTL, ECL and CMOS family.
- b. Hamming code.
- c. Multiplexer Tree.
- d. Dynamic RAM Cell.