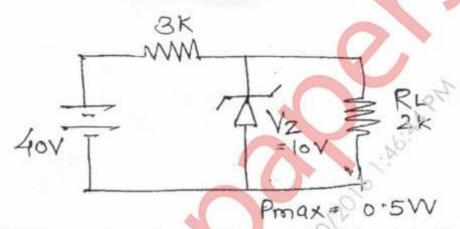
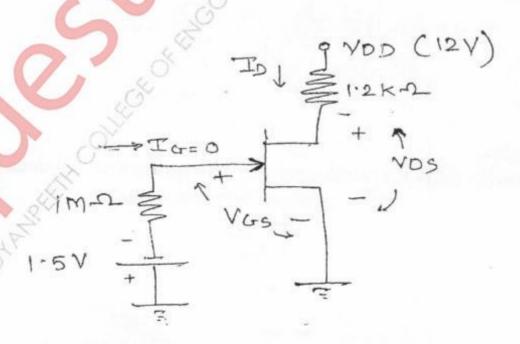
Analog Electronics QP Code: 30705

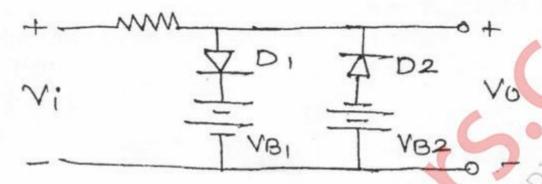


(3 Hours)

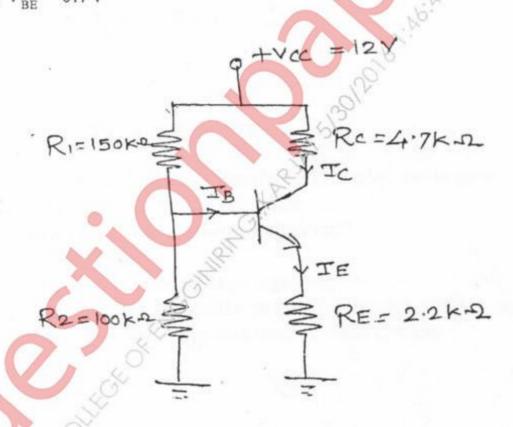

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary.
- 1. Attempt any four questions from the following:
 - (a) Derive the stability factor S(Ico) for fixed bias circuit.
 - (b) Calculate battery current I, Iz and IL in circuit


- (c) How FET be employed as a voltage controlled resistor?
- (d) Explain OP-AMP as summing amplifier averaging amplifier.
- (e) What are the ideal op-Amp characteristics?
- Define and explain harmonic distortion'.
- 2. (a) Determine I_{DQ} and V_{DSQ} for following fixed bias configuration. It is given that $I_{DSS} = 12\text{mA}$ and $V_p = -4V$

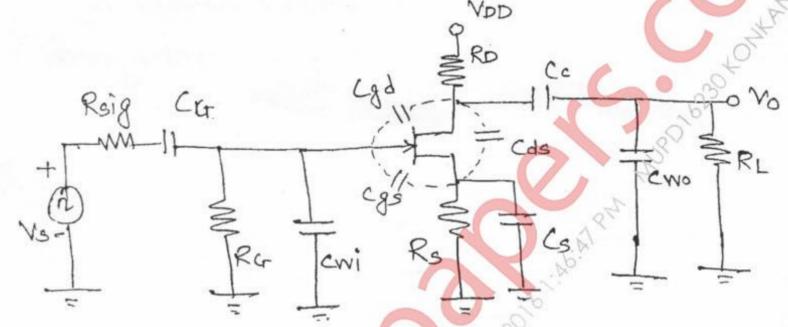
TURN OVER


2

(b) Determine Output voltage. Assume, $V_{B1} = 8 \text{ V}$, $V_{B2} = 6 \text{V}$ and input to be sine wave of 20V peak.

(c) Explain Low pass filter.

3. (a) For the circuit shown find the operating point co-ordinates. Given that $\beta = 50$, $V_{BE} = 0.7V$


(b) Derive equation for three op Amp Instrumentation amplifier. Give advantages 10 and application of Instrumentation amplifier.

[TURN OVER

5

3

4. (a) Determine the higher cut off frequencies for the given circuit diagram. Given $C_G = 0.01 \mu F$, $C_C = 0.5 \mu F$, $C_S = 2 \mu F$, $R_{SIG} 10 K$, $R_G = 1 M$, $R_D = 4.7 K$, $R_S = 1 K$, $R_L = 2.2 K$, $I_{DSS} = 8 m A$. Vp = -4 V, $rd = \infty$, $V_{DD} = 20 V$, Cgd = 2 p F, Cgs = 4 p F, Cds = 0.5 p F, Cwi = 5 p F, CWo = 6 p F, Av = -3

- (b) Write note on 'Transistor as Switch'.
- 5. (a) Explain with a neat diagram a transformer coupled audio power amplifier. 10
 - (b) Draw and explain wien bridge oscillator. 5
 - (c) What do you understand by thermal runaway?
- 6. (a) Draw and explain a series voltage regulator.
 - (b) Draw the circuits for integrator and differentiator. Derive the necessary 10 equation. Draw the frequency response of these circuits.