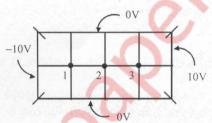
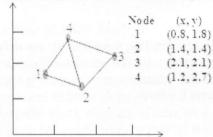
[Time: 3 Hours]


Q.P. CODE: 36047

[Total Marks: 80]

[05]

Note the following instructions.


- 1. Question No. 1 is compulsory.
- 2. Attempt any three out of the remaining five
- 3. Draw neat diagrams wherever necessary.
- 4. Assume data, if missing, with justification
- 5. Figures to the Right indicate full marks.
- O1. Attempt ANY FOUR out of the FIVE
 - (a) Define parallel polarization and perpendicular polarization with the help of a diagram. [05]
 - (b) Find the charge in the volume defined by $0 \le x \le 1$ m, $0 \le y \le 1$ m, if the [05] $\rho v = 120x^2y \,\mu\text{C/m}^3$.
 - (c) Explain the term super refraction with a neat labeled diagram. [05]
 - (d) Determine the potential at the free nodes in the potential system of the following figure using Finite Difference Method (Band Matrix Method). [05]

- (e) State the Maxwell's Equations in free space in terms of E and H only. [05] Explain its significance in wave motion.
- Q2. (a) Derive boundary conditions for electric field for a dielectric-dielectric [05] interface stating its significance.
 - (b) In free space ($z \le 0$), a plane wave with Hi = $10 \cos(10^8 t \beta z) a_x \, \text{mA/m}$ is incident normally on a lossless medium ($\epsilon = 2\epsilon o, \, \mu = 8\mu o$) in the region $z \ge 0$. Determine the reflected wave Hr, Er and the transmitted wave Ht,
 - (c) Define Polarization of a wave. State the conditions to achieve Linear polarization. [2+3]
- Q3. (a) A 300MHz wave is propagating through fresh water. Assuming a lossless medium $\mu_r = 1$, $\epsilon_r = 78$ (at 300MHz). Find the phase constant, the velocity of propagation, the wavelength and the intrinsic impedance. If $E_o = 0.1 \text{V/m}$, also find E_x and H_y .
 - (b) Derive an expression for the Maximum Usable Frequency (MUF) in terms of the skip distance and virtual height. [05]
 - (c) A VHF communication is to be established with a 35W transmitter at 90MHz. Determine the distance up to which LOS communication may be possible if the height of the transmitting and receiving antennae are 40mts and 25mts respectively.

Page 1 of 2

- Q4. (a) Obtain reflection coefficient and transmission coefficient of [8+2] perpendicularly polarized wave incident on a dielectric-dielectric boundary with oblique incidence. Define the Brewster angle for this case.
 - (b) Consider the two element mesh shown in the fig below. Using the finite [10] element method, determine the potentials within the mesh.

- Q5. (a) What is the loss tangent of a material? How does it classify materials? [2+3]
 - (b) Derive Helmholtz equations. [5]
 - (c) A point charge $Q_1 = 10\mu C$, is located at $P_1(1, 2, 3)$ in free space, while [5+5] $Q_2 = -5\mu C$ is at $P_2(1, 2, 10)$.
 - (a) Find the vector force exerted on Q₂ by Q₁.
 - (b) Find the coordinates of P₃ at which a point charge Q₃ experiences no force.
- Q6. (a) A 5nC point charge is located at A(2, -1, -3) in free space. Find E, at the origin.
 - (b) Define skin depth. Most microwave ovens operate at 2.45GHz. Assume $\sigma = 1.1 \times 10^6$ mho/m and $\mu_r = 600$ for the stainless steel interior. Find the depth of penetration.
 - (c) Explain Ducting. State the conditions under which a duct is formed. [05]
 - (d) With respect to the application of Electromagnetic Waves, explain the working of an Electromagnetic Pump. [05]