QP Code: 30797

[Total Marks: 80

N.B.:

- 1. Question no.1 is compulsory
- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data wherever necessary.

Answer the following QI

[20]

- a) Determine if the following system is memoryless, causal, linear, time invariant $y(t) = x^2(t-t_0) + 2$
- b) Explain in brief ROC (Region of Convergence) conditions of Laplace transform.
- c) Consider two LTI systems connected in series. Their impulse responses are h₁[n] and h₂[n] respectively. Find the output of the systems iTx[n] is the input being applied to one of the systems.

$$x[n] = \{1,2\}$$

$$x[n]=\{1,2\}$$
 $h_1[n]=\{1,0,-1\}$ $h_2[n]=\{2,1,-1\}$

- d) State and prove time reversal property of Continuous time Fourier Series.
- e) Find energy of a causal exponential pulse $x(t) = e^{-\alpha t}u(t)$ $\alpha > 0$
- Q 2] a) A DT signal is given by the following expression. Find its Z transform [10] $x[n] = n(-\frac{1}{2})^n u[n] * (\frac{1}{4})^{-n} u[-n]$
 - b) A CT signal x(t) is applied to the input of a CT LTI systems with unit impulse response h(t). Find out y(t) using Convolution integral. [10]

$$x(t) = e^{-at}u(t)$$
 a > 0
h(t) = u(t)

- Q3] a) Consider a causal LTI system with $H(j\omega) = \frac{1}{j\omega + 2}$. For a particular input x(t), this system produces output $y(t) = e^{-2t}u(t) - e^{-3t}u(t)$. Find out x(t) using Fourier Transform. [10]
 - b) Obtain Inverse Laplace Transform of the function $X(s) = \frac{3S+7}{S^2-S-12}$ for following ROCs.

Also comment on the stability and causality of the system for each of the ROC conditions. Support your answer with appropriate sketches of ROCs. [10]

- i) Rs(S)>4
- ii) Re(S) < -3
- iii) -3 < Re(S) < 4

QP Code: 30797

Q. 4] a) A DT signal has been shown. Sketch the following signals.

- i) x[n-4]
- ii) x[4-n]
- iii) x[-2n+2]
- iv) x[n]u[3-n]

b) Find out DTFT of the following

 $\{96\}$

[80]

i)
$$x[n] = \{ 1,-1,2,2 \}$$

QP Code: 30797

ii)
$$x[n] = \sin \left[\frac{\pi n}{2} \right] u[n]$$

c) Determine inverse Z Transform of

[06]

$$X(Z) = \frac{3}{(1 - Z^{-1})(1 + Z^{-1})(1 - 0.5Z^{-1})(1 - 0.2Z^{-1})}$$

Q5) a) Find the trigonometric Fourier Series for the waveform shown in the following figure. [10]

b) Determine impulse response of h[n] for the system described by the second order difference equation. [10]

y[n]-4y[n-1]+4y[n-2]=x[r]-x[n-1] when y[-1]=y[-2]=0

Q6) a) A LTI system has the following transfer function

[10]

$$H(Z) = \frac{Z}{(Z - \frac{1}{4})(Z + \frac{1}{4})(Z - \frac{1}{2})}$$

- i) Give all possible ROC conditions
- ii) Show pole-zero diagram of a system
- iii) Find impulse response of system
- iv) Comment on the system stability and causality for all possible ROCs