Q.P. Code: 3621

(3 Hours)

Total Marks: 80

20

- N.B. :
- (1) Question no.l is compulsory.
- (2) Attempt any three questions out of the remaining five.
- (3) Assume suitable data wherever necessary.
- Determine the fundamental period of the following signals.

(i)
$$x(t) = 14 + 40\cos(60\pi t)$$
 (ii) $x[n] = \cos^2\left[\frac{\pi}{4}n\right]$

- - Compare the nature of ROC of Z transform and Laplace transform. (b)
 - For the given system, determine whether it is, (c)
 - (i) memory less (ii) causal

 - (iii) linear (iv) time-invariant

$$y[n]=x[-n]$$

Find out even and odd component of the following two signals. (d)

(1)
$$x(t) = \cos^2 \frac{\pi t}{2}$$
 (2) $x(t) = \begin{cases} t \dots 0 \le t \le 1 \\ 2 - t \dots 1 < t \le 2 \end{cases}$

- Determine whether the signals are power or energy signals. Calculate energy/ (e)power accordingly.
 - (i) $x(t) = Ae^{-\alpha t}u(t) \dots \alpha > 0$
- ii) x[n]=u[n]
- Expand the periodic gate function as shown in the figure by the exponential 10 Fourier Series. Also plot the Fourier spectrum (Magnitude and phase spectrum).

- Find the inverse Laplace Transform of the following. $\frac{5-3}{5}$ (b)

 - (ii) $X(S) = \frac{5s^2 15s 11}{(s+1)(s-2)^3}$

Obtain inverse Laplace transform of the function

$$X(s) = \frac{3S + 7}{s^2 - 2s - 3}$$

Write down and sketch possible ROCs. Find out inverse Laplace for all the possible ROCs.

Using the z transform method, solve the difference equation

$$y[n] - 4y[n-1] + 4y[n-2] = x[n] - x[n-1]$$

When $y(-1) = y(-2) = 0$

- Explain Gibbs phenomenon. Also explain conditions necessary for the 5 convergence of Fourier Series.
 - Find out Fourier Transform of $f(t)=10 \delta(t-2)$. Sketch its amplitude and (b) phase spectrum.
 - Perform convolution of (c)
 - (i) 2u(t) with u(t)

(ii) $e^{-2t} u(t)$ with $e^{-5t} u(t)$

(iii) tu(t) with e^{-5t} u(t)

5. (a) Convolve
$$x[n] = \left(\frac{1}{3}\right)^n u[n]$$
 with $h[n] = \left(\frac{1}{2}\right)^n u[n]$ using Fourier transform. 10

A system is described by the following difference equation. (b)

10

$$y[n] = \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] + x[n]$$

Determine the following

- (i) The system Transfer function H(z)
- (ii) impulse response of the system h[n]
- (iii) Step response of the system s[n]
- A discrete time signal is given by $x[n] = \{1,1,1,1,2\}$. Sketch the following 10 signals.
 - $(a) \times [n]$
- (b) x[n-2] (c) $x[n] \cdot u[n-l]$
- (d) x[3-n] (e) $x[n-1] \cdot \delta[n-1]$
- For the periodic signal x[n] given below, find out Fourier series coefficient. 10 (b)

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$