Q. P. Code: 24113

(3 Hours)

[Total Marks: 80]

N.B.:

- 1. Question No.1 is compulsory.
- 2. Attempt any three questions out of the remaining five.
- 3. Assume suitable data wherever necessary.
- 1. Answer the following

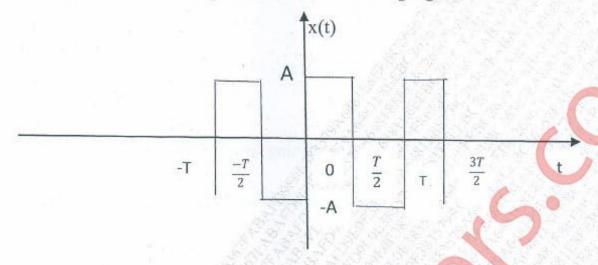
20

 a) Determine whether the following signals are energy signals or power signals and calculate their energy or power.

(1)
$$x(t) = e^{-4t}u(t)$$

(2) x (n) =
$$(\frac{1}{6})^n$$
u(n)

- b) Determine if following system is memoryless, causal, linear, time invariant.
 y (t)=aⁿ x(n)
- c) Using properties of Fourier transform, determine Fourier transform of x(t) $x(t) = e^{-3|t-t0|} + e^{3|t+t0|}$
- d) Find out even and odd components of following signals:


$$(i)x(n) = u(n) - u(n-5)$$

$$(ii)x(t) = 5+7t+9t^2$$

e) Determine relation between continuous time Fourier Transform and Laplace Transform.

2. (a) Determine Fourier Series representation of following signal:

10

(b) Find impulse response and step response of continuous time systems governed by

10

Following transfer functions.

$$H(s) = \frac{s+3}{s^2+6s+8}$$

3. (a) A continuous time signal is defined as,

10

$$x(t) = t; 0 \le t \le 3$$

$$x(t) = 0; t > 3$$

Sketch waveforms of following signals:

(iv)
$$x(0.5t+1)$$

(b) Determine inverse z-transform of following function using long division method: 05

$$X[z] = \frac{z^2 + 2z}{z^3 - 3z^2 + 4z + 1}; ROC; |z| > 1$$

(c) Compute the DTFT of sequence $x(n) = \{0, 1, 2, 3\}$. Sketch magnitude and phase O5 Spectrum.

Q4] (a) Using Laplace Transform determine complete response of system described by following Equation.

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + x(t); \text{ where } y(0) = 1; \frac{dy(0)}{dt} = 3, \text{ for input } x(t) = u(t)$$

- (b) Find impulse response of system described by following difference equation $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1) \text{ where all initial conditions are zero.}$
- 5. (a) For the following continuous time signals, determine Fourier Transform.
 - (i) $x(t) = e^{-at} u(-t)$
 - (ii) $x(t) = \sin \omega_0(t) u(t)$
 - (b) Determine Fourier series representation of x (n) = $4\cos\frac{\pi n}{2}$ 05
 - (c) Determine cross correlation of sequence $x(n) = \{1,1,2,2\}$ and $y(n) = \{1,3,1\}$ 05
- (a) The input signal x(t) and impulse response h(t) of a continuous-time system are described as follows
 x(t) = e^{-3t} u(t) and h(t) = u(t-1). Find output of system using convolution integral.
 - (b) Determine Z Transform and ROC of 10
 - (i) $x(n) = n^2 u(n)$
 - $(ii)x(n) = a^n \cos \omega_0 n u(n)$