SE-SEM IN (CBUS)

EXTC DIED Thyphomy Signeds i system

QP Code:12561

(3 Hours)

[Total Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Assume suitable data wherever necessary.
- 1. (a) Determine the fundamental period of the following signals:—

20

(i)
$$x(i) = \cos \frac{\pi}{3} i + \sin \frac{\pi}{4} i$$

(ii)
$$x[n] = \cos^2 \frac{\pi}{8}n$$

- (b) State and prove Time Shifting and Time Scaling property of continuous time Fourier Transform.
- (c) For the following system, determine whether it is. (i) memory less, (ii) causal, (iii) linear, (iv) time-invariant $y[n] = x[n^2]$
- (d) Find out even and odd component of the following two signals:
 - (i) $x(t) = t^3 + 3t$
 - (ii) $x[n] = \cos n + \sin n + \cos (n) \sin (n)$
- (e) Determine whether the signals are power or energy signals. Calculate energy / power accordingly:
 - (i) $x(t) = 0.9 e^{-3t} u(t)$
 - (ii) x[n] = u[n]
- 2. (a) Find the inverse Laplace Transform of $\frac{s-2}{s(s+1)^3}$

5

- (b) Let $x(t) = 1 \dots 0 \le t \le 27$ and; $h(t) = e^{-at} \dots 0 \le t \le T$. Compute y(t) using 10 graphical convolution approach.
- (c) State and discuss the properties of the region of convergence for Z Transform.
 - 40

3. (a) An LTI system is characterized by the system function:

10

$$H(z) = \frac{z}{\left(z - \frac{1}{4}\right)\left(z + \frac{1}{4}\right)\left(z - \frac{1}{2}\right)}$$

Write down possible ROCs. For different possible ROCs, determine causality and stability and impulse response of the system.

(b) Calculate Z transform of the following signals:

10

(i)
$$x[n] = n\left(-\frac{1}{4}\right)^n u[n] * \left(-\frac{1}{6}\right)^{-n} u[-n]$$

(ii)
$$x[n] = u[n - 6] - u[n - 10]$$

- (a) For the periodic signal $x(t) = e^{-t}$ with a fundamental period $T_0 = 1$ second. Find the 10 exponential form of Fourier Series. Also plot the Fourier spectrum (Magnitude and phase spectrum)
 - (b) Consider a continuous time LTI system described by $\frac{dy(t)}{dt} + 2y(t) = x(t)$. Using the 10 Fourier transform, find out output to each of the following input signals.
 - (i) $x(t) = e^{-t}u(t)$ (ii) x(t) = u(t)
- (a) Convolve $x[n] = \left(\frac{1}{3}\right)^n u[n]$ with $h[n] = \left(\frac{1}{2}\right)^n u[n]$ using convolution sum formula and 10 verify your answer using z transform.
 - (b) Explain Gibb's phenomenon. Also explain conditions necessary for the convergence of Fourier Series.
 - (c) A system is described by the following difference equation. Find out its transfer function H(z).

$$y[n] = \frac{3}{4}y[n-1] - \frac{1}{8}y[n-2] + x[n] + \frac{1}{2}x[n-1]$$

(a) For the signal x(t) depicted in the figure given below, sketch the signals: -10

- $(i) \times (-t)$
- (ii) x (t + 6)
- (iii) \times (3t)
- (iv) x (t / 2)
- (b) For the periodic signal x[n] given below, find out Fourier Series coefficient:

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left[\frac{2\pi}{N}\right]n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$