Q. P. Code: 38142



[Total Marks: 80]

N.B.: 1) Question No. 1 is Compulsory.

- 2) Answer any THREE questions from Q.2 to Q.6.
- 3) Figures to the right indicate full marks.
- Q.1 (a) Verify Cauchy-Schwartz inequality for u= (2, 1,-3) v= (3, 4,-2). (5)
  Also find angle between u & v.
  - (b) If  $A = \begin{bmatrix} 2 & 0 & 0 \\ 5 & -1 & 0 \\ 2 & 3 & 3 \end{bmatrix}$  find Eigen values of  $A^2 + 6A^{-1} 3I$ . (5)
  - (c) Evaluate  $\int_C \frac{z^3 + 2Z}{(Z-1)^2} dz$  when C is |z| = 2. (5)
  - (d) Find the extremals of  $\int_{x_1}^{x_2} (x + y')y' dx$ . (5)
- Q.2 (a) Verify Cayley-Hamilton theorem & hence find  $A^{-1}$ , where A = (6)  $\begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}.$ 
  - (b) Find the extremal of  $\int_{x_1}^{x_2} (2xy y''^2) dx$ . (6)
  - (c) Obtain Laurent's series expansion of  $f(z) = \frac{Z+2}{(Z-3)(Z-4)}$  about z=0.
- Q.3 (a) Evaluate  $\int_0^{1+i} z^2 dz$  along the parabola  $x = y^2$ . (6)
  - (b) Show that  $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$  is derogatory & find its minimal
  - (c) Reduce the following quadratic form into canonical form & (8) hence find it's rank, index, signature &value class  $x^2 + 2y^2 + 3z^2 + 2yz + 2xy 2zx.$

- Q.4 (a) Find unit vector orthogonal to both u = (-6,4,2) v = (3,1,5).
  - (6)
  - (b) Evaluate  $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+4)} dx.$ (c) Show that matrix  $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$  is diagonalizable. Also (8)find its diagonal and transforming matrix.
- Using Rayleigh-Ritz method find solution for the extremal of the (6) functional  $\int_0^1 (2xy + y^2 - (y')^2) dx$  given y(0) = y(1) = 0.
  - (b) Find an orthonormal basis for the subspace of  $IR^3$  using Gram-(6)Schmidt process where  $s = \{(1,0,0), (3,7,-2), (0,4,1)\}$
  - (c) Find the curve C of given length 'l' which encloses a maximum (8)
- (6)If  $A = \begin{bmatrix} \pi & \frac{\pi}{4} \\ 0 & \frac{\pi}{2} \end{bmatrix}$  find  $\cos A$ . Q.6 (a)
  - (b) Check whether the set of all pairs of real numbers of the form (6)(1, x) with operations
    - (1,a) + (1,b) = (1,a+b) and k(1,a) = (1,ka) is a vector space, where k is real number.
  - Find the singular value decomposition of  $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ . (8)