Q.P. Code: 545702

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- Solve Any Three questions from remaining Five questions.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and mention the same in the answer sheet.

Solve any Five:

Define CMRR. Derive the expression for CMRR of a BJT differential amplifier.

Draw the circuit diagram of an inverting amplifier using Op-Amp and (b) derive expression for its voltage gain.

Differentiate between small signal BJT and power BJT. (c)

For the circuit shown below find IQ. (d)

For both MOSFETS $V_{TN} = 1V$, $K_n = 100 \mu A/V^2$.

Explain working of Integrator using Op-Amp.

For differential amplifier with $A_d = 100$ and $A_c = 0.1$. If two sets of inputs are applied as given below. (i) $V = 100 \mu V$, $V_2 = 80 \mu V$

(i)
$$V = 100 \mu V$$
, $V_2 = 80 \mu V$

$$(ii) = 200 \mu V, V_{2} = 160 \mu V$$

(ii) $V_1 = 200 \mu V$, $V_2 = 160 \mu V$ Determine output voltage in each case.

TURN OVER

2. (a) Determine the corner frequency and maximum gain of the MOSFET amplifier shown in figure.

The transistor parameters are $V_{TP} = -2V$, $K_0 = 0.25$ mA/V² and $\lambda = 0$. (b) For the circuit in Fig. 2b, Find midband gain and corner frequencies.

Fig. 2b

- 3. (a) The cascode circuit shown in Fig. 3a has parameters $V^+ = 12V$, $V^- = 0V$, $R_1 = 58.8 k\Omega$, $R_2 = 33.3 k\Omega$, $R_3 = 7.92 k\Omega$, $R_C = 7.5 k\Omega$, $R_S = 1 k\Omega$, $R_E = 0.5 k\Omega$ and $R_L = 2 k\Omega$. The transistor parameters are $\beta = 100$, $V_{BE} = 0.7 V$, $VA = \infty$, $C\pi = 24 pf$ and Cu = 3 pf.
 - (i) Determine upper 3dB frequencies corresponding to the input and output portions of the equivalent circuit.
 - (ii) Calculate small signal midband voltage gain.

(b) Determine the differential and common-mode input resistances of a differential amplifier shown in figure below:

The transistor parameters are $V_{BE(ON)} = 0.7V$, $\beta = 100$ and $V_A = 100V$.

TURN OVER

(a) Draw a neat circuit diagram and explain working of the improved 3 transistor 10 (MOSFET) current source. Derive the relationship between the output current and reference current.

Draw the circuit diagram for an inverting summing amplifier using operational $\sqrt{10}$ amplifier. Derive the relationship for its output voltage V₀ for four inputs V_1 , V_2 , V_3 and V_4 .

(a) Explain Class - B operation of power amplifiers. What is crossover 10 distortion? How is it eliminated.

(b) For the circuit shown in fig. 5b, the transistor parameters are $\beta = 100$, 10 $P_{DMAX} = 2.5 \text{ W}, V_{CEMAX} = 25 \text{ V}, I_{CMAX} = 500 \text{mA}. \text{ If } R_{L} = 100 \Omega \text{ then find}$ Vcc and R_R to deliver maximum power to the load. With the obtained values of Vcc and R_R calculate the maximum undistorted ac power that can be delivered to R₁.

Write short notes on any Four:

- (a) Zener Shunt Regulator
- Power MOSFET
- Active Filters
- J. J. L. BAROS SAROTAR YC Multistage Amplifiers
 - Millers Theorem. (e)