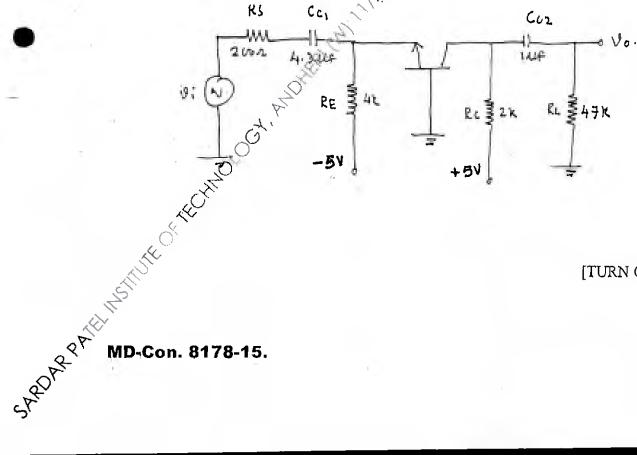
S.E Som IV (CBGS) EXTC. AE-II

Q.P. Code: 5328

(3 Hours)

[Total Marks :80

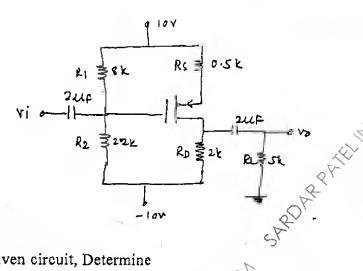

20

23/11/15

N.B.: (1) Question No.1 is compulsory

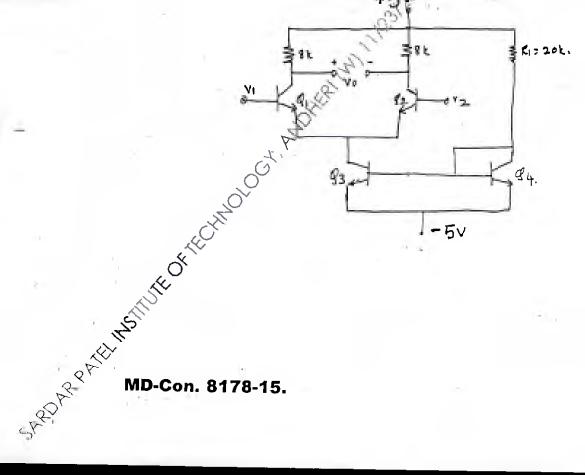
- (2) Solve any three from remaining five questions.
- (3) Figure to the right indicates full marks.
- (4) Assume suitable data if necessary.
- 1 Solve Any four:-
 - (a) In case of CE amplifier, Why does the bandwidth of amplifier decrease with increase in gain? Support the answer with relevent mathematical equation.
 - (b) Instead of single Power Supply, why we use Dual power supply biasing for differential amplifier?
 - (c) Why Efficiency of class A power Amplifier is less than class B.
 - (d) What is the drawback of current mirror circuit using MOSFET? How it is overcome?
 - (e) Why we prefer series voltage Regulator over shunt voltage Regulator?
- The Parameters of transistor are $V_{BE} = 0.7V$ and $\beta = 100$, $V_A = 0V$, Determine 10 2. (a) (a) Q point of BJT

 - (b) Time constant associated with C_{c1} and C_{c2}
 - (c) Lower cut-off freq. due to C_{c1} and C_{c2}


[TURN OVER

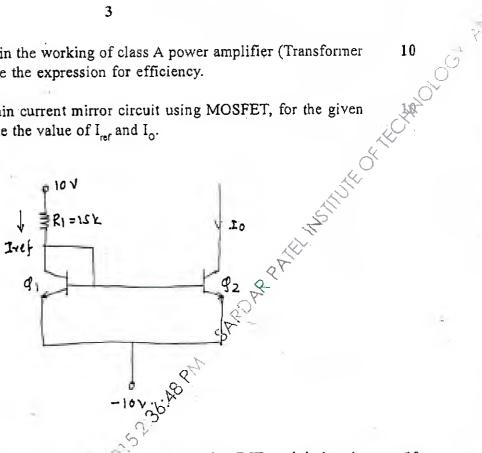
MD-Con. 8178-15.

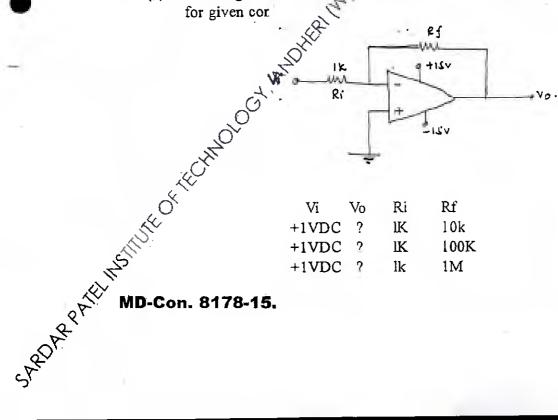
5


1.0

For the PMOS CS amplifier, transistor parameters are $V_{TP} = -2V$, Kp = 1(b) 10 JTHO FTHE CHINOLOCT mA/V^2 , $\lambda = 0$, Cgs = 15pf, Cgd = 3pf Determine (a) Equivalent Miller capacitance (b) upper 3dB frequency

- 3. (a) For the given circuit, Determine
 - (i) Differential mode gain Ad
 - (ii) Common mode gain Ac
 - (iii) CMRR


e given circuit, Determine
Differential mode gain Ad
Common mode gain Ac
CMRR
For BJT
$$\beta = 100$$
 V_{BE} = 0.7V_DV_A = 100V.


[TURN OVER

Q.P. Code: 5328

- Draw and explain the working of class A power amplifier (Transformer (b) coupled). Derive the expression for efficiency.
- Draw and explain current mirror circuit using MOSFET, for the given 4 (a) circuit determine the value of I_{ref} and I_0 .

- Draw the circuit diagram of dailington pair using BJT, and derive the 10 (b) * expression for Av, Ai, Zi and Zo.
- For the given circuit, derive the equation for voltage gain A_f and find V_o 10 5. (a) for given cor

TURN OVER

- 4
- 20 months and a second and a se