SELEXTCITT CBGS 28/5/14

DE-

QP Code: NP-18690

		(3 Hours) [Total Marks: 80	
N.B	· (1) (2) (3) (4)	Assume suitable additional data if required.	
1.	(lain the following:— (a) For ECL and CMOS logic families define— (i) noise margin (ii) fan-in (iii) fan-out. (b) Compare Asynchronous and synchronous counter (c) Explain static RAM (d) Explain Master-Salve J.K Flip-flop.	20
2.		Perform following operation using 2's compliment method— (i) $(28)_{10} - (42)_{10}$ (ii) $(52)_{10} - (-18)_{10}$ Prove the following using Boolean algebra.	5
•		\overline{A} BC + \overline{A} BC + ABC+ AB \overline{C} = AB + BC + CA Design 2 bit comparator.	10
3.	(b)	Minimum the following using Quine Mc Clusky method. $F(A, B, C, D) = \sum m(3, 4, 9, 13, 14, 15) + \sum d(5,6)$ Design synchronous counter using J. K flip-flop for the given sequence — $0-2-3-5-7-0$.	10 10
4.	(b)	Design following Boolean equation using 4:1 mux $F((A, B, C, D) = \sum m(2, 4, 5, 7, 9, 11, 12)$ Compare EPROM and FLASH memories. Explain bidirectional 4 bit universal shift register.	5 10
	(b)	Explain 3: 8 decoder. Explain Mealey machine and Moore machine. Write VHDL code for 3 bit binary down counter.	5 10
	(b)	Explain Architecture and teatures of FPGA. Implement Ex-OR gate using NAND Convert (118 ₁₀) in to (i) BCD (ii) Hexadecimal (iii) octal.	1 û 5 5