SET ELLE SEM III COGS/ Digetal Electronics - 109-12-2016

Q.P. Code: 545401

EXAM *

(3 Hours)

(3) Figures to the right in the bracket indicate full marks.

(2) Attempt any 3 questions from Q.2 to Q.6.

(4) Assume suitable data if necessary.

N.B.: (1) Question No. 1 is compulsory.

[Total Marks: 80

1.	a)	State basic theorems of Boolean algebra.	5
	b)	Compare Mealy and Moore machine	5
	c)	Define Noise Margin, Propagation delay, Power Dissipation	5
	d)	Design a full adder using half adders and logic Gates	5
2.	a)	Prove that NAND and NOR Gates are universal Gates	10
	b)	Design a 2-bit comparator and implement using logic Gates	10
3.	a)	Design a 4 bit Binary to Grey code converter.	10
	b)	Implement the given function using single 4:1 Multiplexer and few logic gates: $F(A, B, C, D) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 15)$	10
4.	a)	What is a universal shift register? Explain its various modes of operation	10
	b)	Write a VHDL program to design a 3:8 Decoder.	10
5.	a)	Minimize the following expression using Quine McClusky Technique $F(A,B,C,D) = \sum m(0,1,2,3,5,7,9,11)$	10
	b)	Convert JK FF to T FF and JK FF to D FF	10
6.	a)	Explain the working of 3-bit asynchronous counter with proper timing diagram.	10
	b)	Write a note on CPLDs.	10