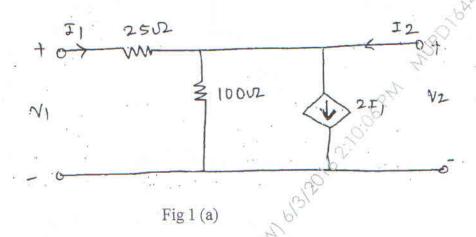
5

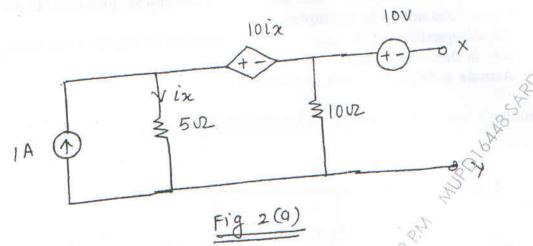

5

QP Code: 30754

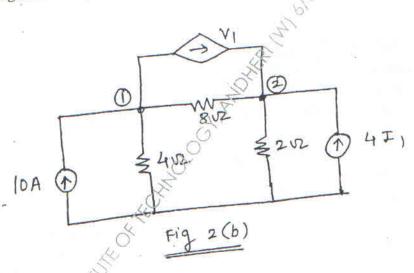
(3 Hours)

[Total Marks: 80

- (1) Attempt questions No. 1 and any 3 from remaining questions. In all N.B.: 4 questions are to be attempted.
 - (2) All sub-questions of the same question should be answered at one place only in their serial orders, and not scattered.
 - Assume suitable data with justification if missing.
- 1. (a) Determine Y parameters for the network shown in fig 1 (a)


- (b) Test if $F(s) = S^4 + S^3 + 5S^2 + 3S + 4$ is a Hurwitz polynomial.
- (c) Two coils connected in series have self inductance 80 mH & 20 mH respectively The total inductance of the circuit is found to 140 mH. Determine the
 - (i) mutual inductance between two coils and
 - (ii) The coefficient of coupling
- (d) Synthesize the following function into a network.

 $z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$ using cauer -1 form.


[TURN OVER]

2. (a) Find the Thevenin's equivalent across the terminals XY for the circuit shown in fig 2 (a)

5 (b) Determine the node voltage at node (1) & (2) of the Network Shown in fig 2(b) by using nodal analysis.

5

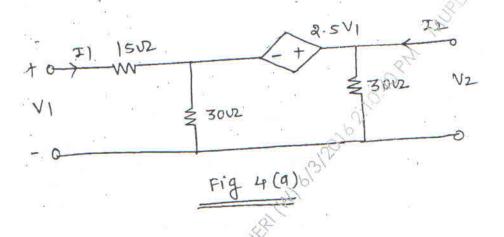
(c) Test Whether

F(s) =
$$\frac{s(s+3)(s+5)}{(s+1)(s+4)}$$
 is a positive real function.

[TURN OVER]

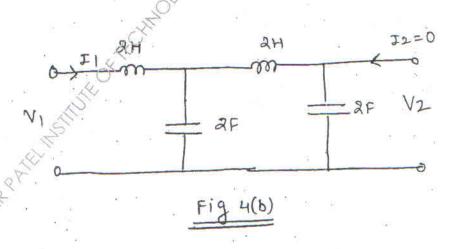
3. (a) Synthesize the driving point function using Foster -I and Foster -II form.

10


$$z(s) = \frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$$

(b) State and prove Initial value theorem.

(c) A Transmission line has distributed parameters R=6 Ohms / km, L=2.2 mH/km $C=0.005 \mu F / km & G = 0.005 \mu mho / km$ Determine characteristics impedance and propagation constant at 1KHz frequency


10

4. (a) Find ABCD parameters for the two port Network shown in fig 4 (a).

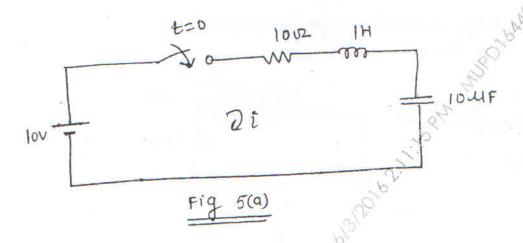
5

(b) Find the Network functions for the network shown in fig 4 (b)

4

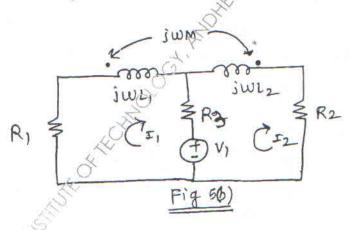
- (c) A Transmission line has a characteristics impedance of 50+j 100Ω and is terminated in a load impedance of 73 j 42.5 Ω Calculate
- 5

(a) The reflection coefficient.


(b) The standing wave ratio

5. (a) The Network shown in fig 5 (a), switch K is closed at t = 0, Assume all initial

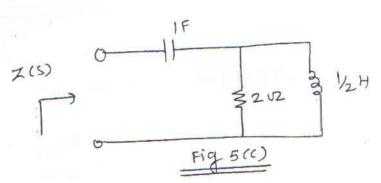
10


conditions

as zero. Find
$$i$$
, $\frac{di}{dt}$ & $\frac{d^2i}{dt^2}$ at $t = 0^+$

5

(b) Write the KVL equations in standard form for the N/W shown in fig 5(b)



5

5

5

(c) Find poles and zero of the Impedance Z(s) for the Network Shown in fig 5 (c)

- 6. (a) Why is the Impedance matching required? Draw the following normalized quantities on the smith chart.
 - (i) $(3+i3) \Omega$
- (ii) $(1.0) \Omega$
- (iii) (2-j1) Ω
- (i) j 1. 0 Ω
- (b) Write short note on:

Time domain analysis using Laplace Transform.

- (c) Define the following terms
 - (i) Phase Velocity
 - (ii) Characteristic impedance
 - (iii) Reflection coefficients