Q.P. Code :16469

20

10

[Time: Three Hours] [Marks:80]

Please check whether you have got the right question paper.

N.B: 1. Question No 1 is compulsory.

- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data if required.
- 4. Figure to the right indicates full marks.
- Q.1 Attempt any four from the following
 - a) What are the properties of sate transition matrix?
 - b) How to find gain margin and phase margin from bode plot?
 - c) Explain any five rules of root locus plot.
 - d) Differentiate between open loop and close loop system.
 - e) Draw the step response of a second order undamped, under damped and critically damped system.
- Q.2 a) Find transfer function of the block diagram shown in figure 1 by using block diagram reduction method 10

Figure 1

b) Find the value of C(s).

Figure 2

Page 1 of 2

Q.P. Code:16469

10

10

10

10

10

20

Q.3 a) For the unity feedback system having

G (s) =
$$\frac{10(s+1)}{s^2(s+2)(s+10)}$$

Determine

- i. Type of system
- ii. Error coefficients and
- iii. Steady state error for i/p as $1+4t+\frac{t^2}{2}$
- b) For the system shown below choose V₁(t) and V₂(t) as state variables and write down the state equations 10 satisfied by them.

Figure 3

Q.4 a) Sketch the root locus for an open loop transfer function of a control system

G(s)H(s) =
$$\frac{k}{s(s+4)(s^2+4s+10)}$$

b) Sketch the bode plot and determine GM and PM for the transfer function

$$G(s)H(s) = \frac{8(s+1)}{s(s^2+4s+5)}$$

Q.5 a) Draw Nyquist plot for &

G(s)H(s) =
$$\frac{k(s+3)}{s(s-1)}$$
 and hence comment on stability

b) Determine stability

i.
$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 18$$

ii.
$$s^7 + 2s^6 + s^5 + 2s^4 - s^3 - 2s^2 - s - 2 = 0$$

- Q.6 Write short note on any two from the following
 - a) Co -relation between time domain and frequency domain specification.
 - b) Explain the effect of addition of poles and zeros to the system.
 - c) Different continuous composite controllers.