GE Sem TURCBOTS) - Electronics 31/5/16

PCS

Principles of Control System

(3 Hours) [Total Marks: 80]

N.B: 1. Question No. 1 is Compulsory.

- 2. Attempt any three from the remaining questions.
- 3. Assume suitable data wherever necessary.
- 4. Figure to right indicate full marks.
- 1. Attempt any four questions:-

(20)

- a) Explain Adaptive control system.
- b) Explain lead and lag compensator.
- c) Explain Controllability and Observability with its necessity condition for stability.
- d) Determine whether the following systems are stable, marginally stable, and unstable

(i) -2,0; (ii) -2+j, -2-j; (iii) -2+j4, -2-j4, -2; (iv)
$$x(t) = \cos\omega t$$
; (v) $x(t) = e^{-t} \sin 4t$.

- e) Examine the stability of $s^5 + 2s^4 + 2s^3 + 4s^2 + 4s + 8 = 0$ using Routh's method.
- 2. a) Obtain the overall transfer function from block diagram.

(10)

b) Sketch the complete root locus for the system

(10)

$$G(s)H(s) = [K(s+1)(s+2)]/[(s+0.1)(s-1)], \text{ where } K > 0.$$

3. a) Obtain the state variable model of the parallel RLC network.

(10)

b) Explain P, PI and PID controller.

(10)

$$\begin{bmatrix} \dot{\chi}_1 \\ \dot{\chi}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$$

Where u > 0.

Determine the following:

- (i) The state transition matrix.
- (ii) Controllability of the system.

$$G(s) = [288 (s+4)] / [s(s+1) (s^2 + 4.8s + 144)] and H(s) = 1.$$

- 5. a) Derive the expressions of Peak Overshoot when step input applied to the system. (05)
 - b) Sketch the polar plot of G(s) = 12 / [s(s+1)]. (05)
 - c) For $G(s)H(s) = 1+4s / [s^2 (1+s)(1+2s)]$, draw the Nyquist plot and examine the stability of the system. (10)

6. Attempt any two-

(20)

- a) Write a short note on Robust control system.
- b) Construct the signal flow graphs for the following set of equations:

$$Y_2 = G_1Y_1 - G_2Y_4$$

 $Y_3 = G_3Y_2 + G_4Y_3$
 $Y_4 = G_5Y_1 + G_6Y_3$

where Y₄ is the output.

Using Mason's gain formula find the transfer function of the system.

c) Explain the Correlations between time and frequency domain specifications of the system.