Q.P. Code: 26077

[Time: 3 Hours]

[Marks: 80]

20

Please check whether you have got the right question paper.

N.B:

- 1. Question No. 1 is compulsory.
- 2. Attempt any three questions from remaining.
- 3. Assume suitable data if required.
- 4. Figure to the right indicate full marks.
- 1. Attempt any four from the following:
 - a) Explain any five rules of root locus plot.
 - b) What are the properties of state transition matrix.
 - c) Explain adaptive control system.
 - d) Describe the Mason's gain formula with an example.
 - e) Explain need of compensators.
- 2. a) Obtain the overall transfer function from block diagram.

10

b) Find the solution of following state equation.

10

$$\dot{x} = \begin{bmatrix} -5 & -6 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$$

3. a) Explain the type of signal which produces a finite steady state error for following system. Also find the steady state error.

10

i)
$$G(s)H(s) = \frac{20}{(S+2)(S+3)}$$

ii)
$$G(s)H(s) = \frac{20(S+1)}{S^2(S+2)(S+4)}$$

iii)
$$G(s)H(s) = \frac{2.5(S^2 + 2S + 1)}{S(S+1)(S^2 + 5S + 2)}$$

b) Derive an Expression for output response of a second order under damped control system. Assume the input to be unit step signal.

Turn Over

10

- Draw the root locus for the system with $G(s)H(s) = \frac{K(S+2)(S+3)}{S(S+1)}$ and comment on stability.
 - b) Determine the stability of the system having characteristic equation $S^5 + S^4 + 2S^3 + 3S + 5 = 0$
- 5. a) Draw Bode plot and find gain margin and phase margin for $G(s)H(s) = \frac{64(S+2)}{S(S+0.5)(S^2+3.2S+64)}$
 - Discuss the stability of system using Nyquist plot for $G(s)H(s) = \frac{20}{S(S+4)(S-2)}$.
- 6. Attempt any two
 - b) Co-relation between time domain and frequency domain specification.

Different composite controllers.

c) Using Mason's gain formula, find the gain of the following system in figure below.

