Sie Som Miller (CBas) ETEX

QP Code:12509

(3 Hours)

Total Marks: 80

- N. B.: (1) Question No.1 is compulsory.
  - (2) Attempt any three questions out of remaining five questions
  - (3) Assume suitable data, if necessary.
  - (4) Figure to the right indicated full marks.
- 1. Attempt any five:

**20** 

- (a) Differentiate between open loop and closed loop control system.
- (b) Explain the Mason's Gain formula with reference to signal Flow Graph Technique.
- (c) Define and state the condition for controllability and observability for n<sup>th</sup> order MIMO system.
- (d) The characteristic equation for certain feedback control system is given below. Determine the range of value of K for the system to be stable.

$$S^3 + 2 ks^2 + (k + 2) s + 4 = 0$$

- (e) Define gain and phase margin. Draw approximate Bode plot for a stable system showing gain and phase margin.
- (f) Compare between Lead and Lay compensator.
- 2. (a) Derive the output response for second order underdamped control system subjected to unit step input.

10

10

(b) Find the transfer function  $\frac{C(S)}{R(S)}$  using Block diagram reduction Technique.



3. (a) Find the Transfer function for the system show below.



GN-Con.:10578-14.

[ TURN OVER

(b) What are the properties of state transition matrix?

- 4
- (c) For the system shown below, chose  $V_1(t)$  and  $V_2(t)$  as state variables and write down the state equations satisfied by them. Bring these equations in the vector-matrix form.

12



4. (a) Examine the observability of the system given below using kalman's test.

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \\ \dot{\mathbf{x}}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

- (b) Derive the expression for Peak resonant of a standard second order control system.
- (c) Explain the concept of ON/OFF controller.

4

5. (a) For a unit feedback system the open loco transfer function is given by

10

$$G(S) = \frac{K}{S(S+2)(S^2+6S+25)}$$
 Skeich the root locus and find the value of

K at which the system becomes unstable.

10

- (b) Explain Robust control and Adciptive control system.
  - (a) Find polar plot for the transfer function given below  $G(S) = \frac{1}{(1+S)(1+4S)}$  5
  - (b) Write a short note on PID controller.

- 5
- (c) Determine the stability of a system shown by following open loop transfer
- 10

function using Nyquist criterion - 
$$G(s)II(s) = \frac{(4s+1)}{s^2(s+1)(2s+1)}$$