QP Code: 3488

(3 Hours)

Total Marks: 80

- (1) Question No.1 is compulsory. N.B.
 - (2) Attempt any three questions out of the remaining five questions.
 - (3) Figures to right indicate full marks.
- Evaluate $\int |z| dz$, where c is the left half of unit circle |z| = 1 from z = -i to z = i 5
 - (b) If λ is an Eigen value of the matrix A with corresponding Eigen vector X, prove that λ^n is an Eigen value of A^n with corresponding Eigen vector X.
 - Find the extremal of $\int_{x_1}^{x_2} \frac{\sqrt{1+y'^2}}{x} dx$
 - Find the unit vector orthogonal to both [1,1,0] & [0,1,1] (d)
- Find the curve on which the functional $\int_{0}^{1} \left[y'^{2} + 12xy \right] dx$ with y(0) = 0 & y(1) = 1Q2. (a) can be Extremised.
 - Find the Eigen values and Eigen vectors for the matrix | 1 | 3 | 1 | (b)
 - Obtain two distinct Laurent's series expansions of $f(z) = \frac{2z-3}{z^2-4z+3}$ in powers of (c) (z-4) indicating the region of convergence in each case
- Q3. (a) If $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, find A^{50} (b) Evaluate $\int \frac{\sin \pi z^2}{(z-1)(z-2)} dz$, where c is the circle |z| = 3

 - Using Rayicigh-Ritz method, find an approximate solution for the extremal of the (c) functional $I(y) = \int_{0}^{1} (y'^2 - 2y - 2xy) dx$ subject to y(0) = 2, y(1) = 1.

JP-Con.: 10054-15.

QP Code: 3488

- Find the vector orthogonal to both [-6,4,2] & [3,1,5]
 - Show that the matrix $A = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \end{bmatrix}$ is derogatory (b)

and find its minimal polynomial.

Reduce the matrix of the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 - 2x_2x_3$ (c) to canonical form through congruent transformation and find its rank, signature, and value class.

- Find the extremal of $\int_{0}^{x_1} \left(2xy y''^2\right) dx$ 6
 - Show that the set $W = \{[x, y, z] \mid y = x + z\}$ is a subspace of \mathbb{R}^n under the usual (b) 6 addition and scalar multiplication.
 - Show that the following matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$ is diagonalisable. Also find the diagonal form and a diagonalising matrix.
- Q6. (a) If $f(a) = \int_{c}^{3z^{2} + 7z + 1} \frac{dz}{z a}$ where c is a circle |z| = 2, find the values of i) f(-3), ii) f(i), iii f'(1-i)
 - 6
 - Verify Cayley-Hamilton theorem for the matrix A and hence find A^{-1} and A^4 . (c)

Where
$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$$

JP-Con.: 10054-15.