Q. P. Code: 38424

Time: 3 hours Total marks: 80

- N.B. (1) Question No.1 is compulsory.
 - (2) Answer any three questions from remaining.
 - (3) Figures to the right indicate full marks.

Q1. a) Find the extremal of
$$\int_{x_0}^{x_1} \frac{1+y^2}{y^{-2}} dx$$
 05

b) Evaluate
$$\int_{c}^{\frac{\sin^{2}z}{\left(z-\frac{\pi}{6}\right)^{3}}dz}$$
, where C is the circle $|\mathbf{Z}|=1$

c) If
$$A = \begin{bmatrix} \pi & \frac{\pi}{4} \\ o & \frac{\pi}{2} \end{bmatrix}$$
 find $Cos A$

d) The number of messages sent per hour over a computer network has 05 the following probability distribution

X	10	11 12	13	14	15
P(X=x)	.08	3k 6k	4k	4k	.07

Find the mean and variance of number of messages sent per hour.

Q2. a) Construct an Orthonormal Basis of
$$R^3$$
 using Gram Schmidt process to
$$S = \{(1,0,0), (3,7,-2), (0,4,1)\}$$

b) Evaluate
$$\int_{0}^{2+i} \left(z\right)^{2} dz$$
 along

$$\mathbf{j}) \mathbf{y} = \frac{x}{2}$$

- ii) The real axis to 2 and then vertically to 2+i
- c) i) An underground mine has 5 pumps installed for pumping out storm water. The probability of any one of the pumps failing during the storm is $\frac{1}{8}$. What is the probability that at least 2 pumps will be working.

Q. P. Code: 38424

04

- ii) Let W be the set of 2x2 matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ Show that W is a subspace of space V of all 2x2 matrices
- Q3.(a) Calculate Karl Pearson's coefficient of correlation between expenditure and sales from data given

AdvertisingEx penses('000 Rs)	39	65	62	90	82	75	25	98	36	78	<i>ò</i> ,
Sales(Lakhs of Rupees)	47	53	58	86	62	68	60	91	51	84	06

b) Show that the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix}$ is derogatory $\begin{bmatrix} -1 & -2 & 0 \end{bmatrix}$

c) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{13 + 12\cos\theta}$

Q4. a) Using Cauchy's Residue Theorem evaluate $\int_{c}^{\sin \pi z^{2} + \cos \pi z^{2}} dz$ where C is the circle |z| = 3

b) Find the extremals of the functional $\int_{0}^{x_{1}} (y^{-2} - y^{2} + x^{2}) dx$

c) i) Assume that the probability of an individual coal miner being injured in a mine accident during a year is $\frac{1}{2400}$. Calculate the probability that in a mine employing 200 miners there will be at least one fatal accident in a year 04 ii) If X denotes the outcome when a fair die is tossed ,Find the M.G.F of X

ii) If X denotes the outcome when a fair die is tossed ,Find the M.G.F of X about the origin .Hence find the first two moments about the origin.

a) The IQ's of army volunteers in a given year are normally distributed with

Q. P. Code: 38424

04

04

- Q5 mean 110 and standard deviation 10. The army wants to give advanced training to 20% of those recruits with the highest scores. What is the 06 lowest IQ score acceptable for advanced training.
 - b) Solve by Rayleigh Ritz method the boundary value problem $I = \int_{0}^{1} (y^{2} y^{2} 2xy) dx \text{ given y(0)=0 and y(1)=0}$
 - c) Show that the matrix $A = \begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ is similar to a diagonal matrix.
- Q6. (a) Verify Cayley Hamilton Theorem for $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$

Find the transforming matrix and the diagonal matrix.

Hence find A^{-1}

- (b) Obtain Taylor's and Laurent's series expression for $f(z) = \frac{z-1}{(z^2-2z-3)}$ 06 indicating region of convergence.
- (c) i) The lines of regression of bivariate population are 8x-10y+66=0 and 40x-18y=214. The variance of x is 9. Find
 - a) coefficient of correlation r
 - b) the standard deviation of y

ii) If a,b,c are three positive numbers then using Cauchy Schwarz

inequality prove that
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 3^2$$
