Time: 3 Hours Marks: 80

- N. B. 1. Question no. 1 is compulsory.
 - 2. Attempt any **THREE** questions from remaining.
 - 3. Assume suitable data if required.
 - 4. Figure to the right indicate full marks.

Qu.1: Solve any Four

20 M

- (a) Explain the effect of addition of pole and zero to the system.
- (b) Explain any five rules of Root Locus Plot in detail.
- (c) Define Gain margin and Phase margin. Explain how these margins are used for stability analysis.
 - (d) Explain the Mason's gain formula with reference to Signal Flow Graph Technique.
- (e) Explain needs of compensation in control system also explain different types of Compensation with suitable example.

Qu. 2: (a) Using block reduction technique, obtain the transfer function.

10 M

b) Construct SFG for the following set of equation.

10 M

- i) Y2 = G1Y1 G2Y4
- ii) Y3 = G3Y2 + G4Y3
- iii) Y4 = G5Y1 + G6Y3, Where Y4 is the output.

Obtain the overall transfer function by using Mason's gain formula.

Qu. 3: (a) Explain Controllability and Observability with the necessary condition for stability and Check Controllability and Observability for the system 10 M

$$\dot{x} = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} x$$

(b) Explain PID Controller and Model Predictive control system in detail? Also list its advantages. 10 M

Qu. 4: (a) Construct the Routh array and determine the stability of the system whose characteristics equation is

$$S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$$

- (b) Sketch the root locus for a unity feedback control system and forward transfer function is $10\,\mathrm{M}$
- $G(S) = \frac{K(S+3)}{S(S+2)(S+1)(S+4)}$. Find the frequency and gain K for which the root locus crosses the imaginary axis. For what range of k is the system stable?
- Qu. 5: (a) Construct the Bode Plot for the open loop transfer function. Comment on Stability. $G(S) = \frac{288 (S+4)}{S(S+1)(S^2+4.8 S+144)}$ and H(S) = 1.
- (b) State and Prove properties of State Transition matrix. Obtain the state model for the system with transfer function $\frac{Y(S)}{U(S)} = \frac{3S+4}{S^2+5S+6}$ 10 M
- Qu. 6: (a) Sketch the Nyquist plot for a given open loop transfer function 10 M $G(s).H(s) = \frac{1}{(s+1)(s+2)}$ And comment on the stability of the system.

(b) A unity feedback system has
$$G(S) = \frac{20(S+1)}{S^2(S+2)(S+4)}$$
 Find 10 M

- i. All static error co-efficient (Kp, Kv, Ka).
- ii. Steady State Error of ramp i/p with magnitude 4.