(Time: 3 Hours)	Max Mrks:80			
N.B:1) Question no. 1 is compulsory.2) Attempt any three out of the remaining five questions.3) Use suitable data, wherever necessary.				
Q1. Attempt the following questions.				
(A) Differentiate between Mealy and Moore machine.(B) Draw the Standard symbols for ASM Charts.(C) Differentiate between signal and Variable.(D) Explain what Entity in VHDL is.				
Q2. (A) Analyze the clocked synchronous machine given below. Writ transition table and state/output table. Also draw the state				
X P A A A A A A A A A A A A A A A A A A				
(B) Design a mealy sequence detector to detect a sequence 110 and logic gates.	1 using D flip-flops (10)			
Q3. (A) Design a counter which counts the count from 3 to 12 using (B) Design MOD-12 Counter using IC 7493 and logic gates.	IC 74163. (10)			
Q4. (A) Design a circuit with optimum utilization of PLA to implement functions. F1= Σ m(0,2,5,8,9,11) F2= Σ m (1,3,8,10,13,15) F3= Σ m(0,1,5,7,9,12,14)	t the following (10)			

58396 Page **1** of **2**

R١	Fliminate	redundant	states and	draw	reduced	state diagram.
וטו	Lillinate	i Euunuani.	states and	ulaw	reduced	State diagram.

PS	N	Out Put	
	X=0	X=1	Y
Α	В	С	1
В	D	F	100000000000000000000000000000000000000
С	F	E	000000000
D	В	G	
E	F	G	00000000
F	E	D 83778	000000000000000000000000000000000000000
G	F	G SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	0.65225

(10)

(10)

(B) Write a VHDL code for 3:8 decoder with active low output:

(10)

Q6. (A) Write a note on CPLD.

(10)

(B) Draw the data unit for the following RTL description

(10)

Module; Data Mover Memory: A[2]; B[2]; C[2].

Inputs: X[2].
Outputs: Z[2].

- 1. A ← X.
- 2. $C \leftarrow \overline{A}$.
- 3. $B \leftarrow C[0], C[1]$.
- 4. $C \leftarrow A \lor B$.
- 5. Z = C.

58396 Page **2** of **2**