(3 Hours) Total marks: 80

Note :- 1) Question number 1 is compulsory.

- 2) Attempt any three questions from the remaining five questions.
- 3) Figures to the right indicate full marks.
- Q 1.A) Show that $u = y^3 3x^2y$ is a harmonic function. Also find its harmonic conjugate. (5)

B) Find half range Fourier sine series for
$$f(x) = x^3$$
, $-\pi < x < \pi$. (5)

C) If
$$\bar{F} = xye^{2z}i + xy^2coszj + x^2cosxyk$$
 find div \bar{F} and curl \bar{F} (5)

D) Evaluate
$$\int_0^\infty e^{-2t} \sin^3 t \ dt$$
. (5)

Q.2) A) Prove that
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
 (6)

- B) Find an analytic function f(z) whose imaginary part is $e^{-x}(y\sin y + x\cos y)$ (6)
- C) Obtain Fourier series for $f(x) = 1 + \frac{2x}{\pi} \pi \le x \le 0$

$$= 1 - \frac{2x}{\pi} \quad 0 \le x \le \pi$$

Hence deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 (8)

- Q.3) A) Show that F̄ = (2xyz²)i + (x²z² + zcosyz)j + (2x²yz + ycosyz)k, is a conservative field. Find its scalar potential φ such that F̄ = ∇φ and hence, find the work done by F̄ in displacing a particle from A(0,0,1) to B(1,π/4,2) along straight line AB
 - B) Show that the set of functions $f_1(x) = 1$, $f_2(x) = x$ are orthogonal over (-1, 1). Determine the constants a and b such that the function $f_3(x) = -1 + ax + bx^2$

is orthogonal to both f_1 and f_2 on that interval (6)

TURN OVER

C) Find (i) L⁻¹
$$\left\{ log \left[\frac{s^2 + a^2}{\sqrt{s+b}} \right] \right\}$$

(ii) L{
$$(e^{-t}cost.H(t-\pi)$$
}

Q.4) A) Prove that
$$\int J_5(x) dx = -J_4(x) - \frac{4}{x}J_3(x) - \frac{8}{x^2}J_2(x)$$
 (6)

- B) Find inverse Laplace of $\frac{s}{(s^2-a^2)^2}$ using Convolution theorem. (6)
- C) Expand $f(x) = \frac{3x^2 6x\pi + 2\pi^2}{12}$ in the interval $0 \le x \le 2\pi$ as a Fourier series.

Hence, deduce that
$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 (8)

- Q.5) A) Using Gauss Divergence theorem, prove that $\iint_{S} (y^{2}z^{2}i + z^{2}x^{2}j + z^{2}y^{2}k). \overline{N}ds = \frac{\pi}{12}$ where S is the part of the sphere $x^{2} + y^{2} + z^{2} = 1$ and above the xy-plane. (6)
 - B) Prove that $J_3(x) + 3J_0(x) + 4J_0'''(x) = 0$ (6)

C) Solve
$$(D^3-2D^2+5D)y = 0$$
, with $y(0)=0$, $y'(0)=0$ and $y''(0)=1$, (8)

- Q.6) A) Evaluate by Green's theorem for $\int_C (\frac{1}{y} dx + \frac{1}{x} dy)$ where C is the the boundary of the region define by x = 1, x = 4, y = 1 and $y = \sqrt{x}$ (6)
 - B) Find the bilinear transformation which maps the points z = 1, i, -1 onto points w = i, 0-i (6)
 - C) Find Fourier cosine integral representation for $f(x) = e^{-ax}$, x > 0Hence, show that $\int_0^\infty \frac{\cos \omega s}{1+\omega^2} d\omega = \frac{\pi}{2} e^{-x}$, $x \ge 0$ (8)