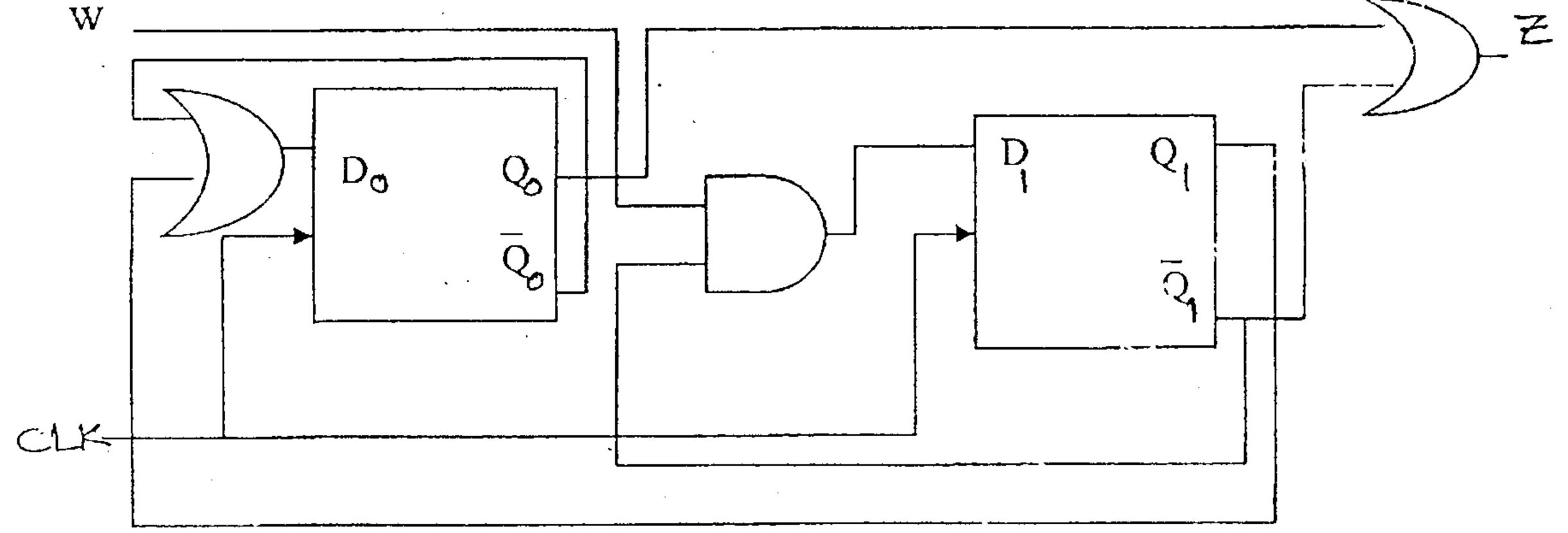
QP Code: NP-18678

(3 Hours)

Total Marks: 80


10

10

20

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three from remaining 5 questions.
- (3) Draw neat diagrams wherever necessary.
- 1. (A) Implement the following function using NOR gates only (after reduction using K map) 10 $F = \pi M (1,2,4,7,11,13) \cdot d (9,15)$
 - (B) Design a MOD 6 asynchronous counter and explain glitch problem-
- 2. (A) Analyze the clocked synchronous machine given below. Write excitation equations, excitation/transition table and state /output table (Use state names A D for Q1-Q2=00-11). Also draw the state diagram.

- (B) Design a 1 digit BCD adder using IC 7483 and explain the operation for (0111) BCD + (1001) BCD. 10
- 3. (A) Write a VHDL code for 8:1 Multiplexer with active low enable input.
 - (B) Design a mealy sequence detector to detect a sequence ---1101—using D flip-flops 10 and logic gates.
- 4. (A) Design a circuit with optimum utilization of PLA to implement the following functions 10

$$F1 = \sum_{m=0}^{\infty} m(1, 2, 3, 6, 9, 11)$$

 $F2 = \sum_{n=0}^{\infty} (0, 1, 6, 8, 9)$

 $F3 = \sum m(2, 3, 8, 9, 11)$

- (B) Implement following function using 4:1 line MUX and NAND gates. 10 F (A, B, C, D) = \sum m (1, 2, 6, 7, 10, 12, 13)
- 5. (A) Design a 8 bit binary up counter using MSI counter IC 74163, draw a circuit diagram and explain working.
 - (B) Eliminate redundant states and draw reduced state diagram.

PS	NS		O/P
	X = 0	X = 1	Υ
Ä	В	C	1
В	D	F	
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

- 6. Write short notes on (Any THREE):
 - 1. XC 4000 FPGA Architecture
 - 2. Stuck at '0' and stuck at '1' fault
- 3. Master Slave JK flip flop
- 4. 2 input TTL NAND gate

----S----