ELEC/IV/CBGS/SP

QP Code: NP-19788

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.

- (2) Answer any three question out of remaining five questions.
- Assume suitable data wherever required.

1. Solve the following:—

- Determine the periodicity of the following continuous time signal: $x(t) = 5 \cos 4\pi t + 3 \sin 8\pi t$.
- Find the z-transform and ROC of the following infinite duration signal: $x(n) = a^{n}U(n) + b^{n}u(-n-1)$
- Determine whetehr the following signal is energy or power signal or neither $x(n) = \left(\frac{1}{4}\right)^n u(n)$
- State Sampling Theorem and explain how aliasing error occurs?
- Classify the following system as linear, non-linear time-variant, time invariant, 10 causal, non causal, static, dynamic.

y(n) = nx(n) and $y(n) = x(n^2)$

An LTI system is described by the equation:

$$y(n) = x(n) + 0.8 x (n-1) + 0.8 x(n-2) - 0.49 y(n-2)$$

Determine the transfer function of the system. sketch the poles and zeros on the z-plane.

State and prove differentiation property of z-transform.

Perform linear convolution using circular convolution.

$$x_1(n) = \{2, 1, 2, 1\}$$

 $x_2(n) = \{1, 2, 3, 4\}$

$$x_2(n) = \{1, 2, 3, 4\}$$

Obtain the magnitude and phase response of the following system by Analitical 10 and Geometric Method.

Determine the inverse z-transform of the function:

10

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

- ROC|z| > 1
- (ii) ROC|z| < 0.5
- (iii) ROC 0.5 < |z| < 1

Sketch for all ROC.

Using radix 2 DIT FFT algorithm compute 8-point DFT for the given:

10

$$x(n) = \{0, 1, 1, 1, 1, 1, 1, 1\}$$

QP Code: NP-19788

Con. 13026-14.