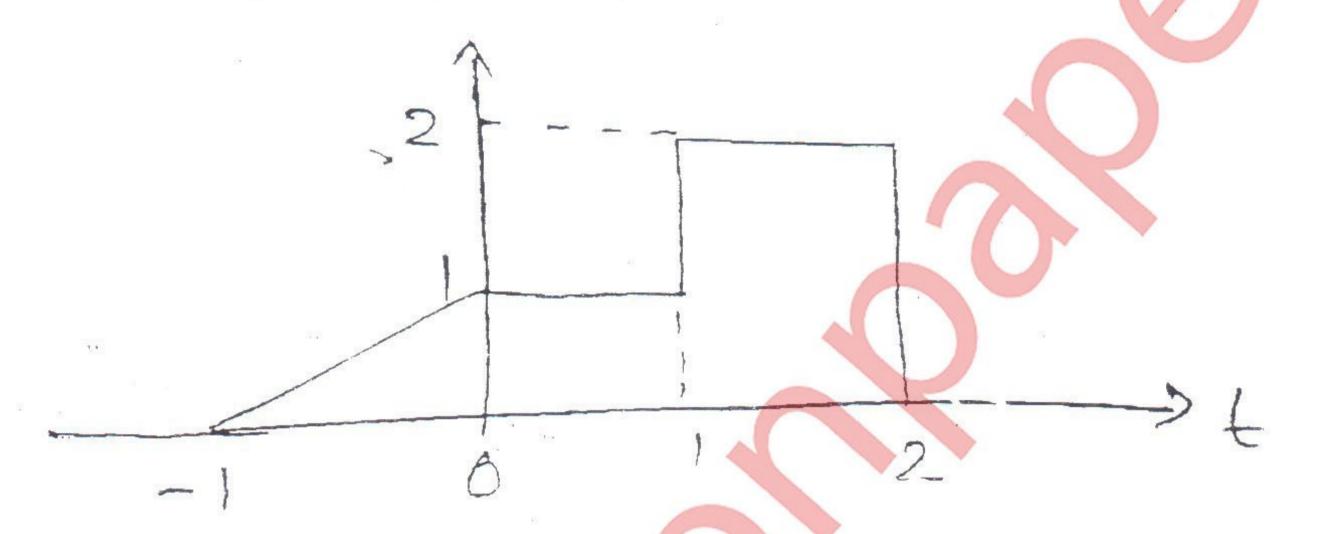
QP Code 12503

[Total Marks: 80]


10

10

10

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions out of remaining five questions.
- 1. (a) Give the classification of signals and systems.
 - (b) What is ROC?
 - (c) Differentiate between minimum, maximum and mixed phare.
 - (d) Write DFT properties.
- 2. (a) A continuous time signal x(t) given below.

Sketch

(i)
$$X_1(t) = -2 x(t)$$

(ii)
$$X_2(t) = x(t-3) - 2x(t)$$

(b) Determine the stability and causality of the system describe by the transfer function.

$$H(z) = \frac{1}{1 - 0.25z^{-1}} + \frac{1}{1 - 2z^{-1}}$$

for ROC 0.25 < |Z| < 2.

3. (a) Consider the following linear constant co-efficient difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n-1)$$

Determine y(n), when x(n) = y(n).

S. E. QP Code **12503**

Determine the periodicity of the following signals.

(i)
$$x(t) = 2\cos\frac{2\pi t}{3} + 3\cos\frac{2\pi t}{7}$$

- (ii) $x(t) = 2\cos 3t + 3\sin 7t$
- (a) Find x(n) considering all possible region of convergance.

$$X(z) = \frac{10z}{(z-1)(z-2)}$$

Find the Z-transform of the following sequence -

(i)
$$x(n) = u(n-2) - u(n-5)$$

(ii)
$$x(n) = \left[\left(\frac{1}{2} \right)^n - \left(\frac{1}{4} \right)^n \right] u(n)$$

Find the DFT of $x(n) = \{1, 2, 3, 4\}$ using DIT-FFT.

Obtain the magnitude and phase response of the following system by analytical and 10

geometrical method
$$h(n) = \left\{1, \frac{1}{2}\right\}$$
.

Sketch the signal

(i)
$$x(t) = 2 u(t) - u(t-2) - u(t-4) - r(t-6) + r(t-8)$$

- (ii) x(t) = 2 r(t) 2i(t-1) 2 u(t-3).
- Determine the inverse Z-transform of

10

$$X(z) = \frac{1}{1 - 0.8Z^{-1} + 0.12z^{-2}}$$

if ROC is |z| > 0.6

if ROC is
$$|z| < 0.2$$

if ROC is
$$0.2 < |z| < 0.6$$