S.E. Electrical IV CBSGS NMOT

28.12.16

Q.P. Code: 544100

(3 Hours)

[Total Marks: 80

20

10

10

10

10

N.B.:

- Question No. 1 is compulsory.
- Answer any three from the remaining five questions.
- Assume suitable data if necessary and justify the same.
- Figures to the right indicate the marks.
- 1 Each question carry five marks

What is significant figures? What are the rules on determining how many significant figures are in a number? Identify the number of significant figures in 0.00300.

- b Compare Graphical and simplex method to solve a linear programming problem. How the multiple solution condition can be identified from the graphical and the simplex method?
- Given three data points (1,6) and (3,28), (5,35). Estimate 'x' at y=20 using Lagrange's method
- Given $\frac{dy}{dx} = x^2(1+y)$ and y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979, evaluate y(1.4) till the error is less than 1% using Adams-Bashforth method.
- Integrate the following set of differential equations using three approximations of Picard's method. Calculate the values of y and z at x=1 by assuming that at x=0, y=4 and z=6.

$$\frac{dy}{dx} = -0.5y;$$
 $\frac{dz}{dx} = 4-0.3z-0.1y$

- b Write the algorithm to find the root of an equation using secant and false position method. Compare the selection of guesses in each iteration of secant and false position method.
- What is meant by curve fitting? Compare least square fitting technique with interpolation technique. Using Newton's Divided difference method of order '3' find 'y' at x = 2.5 from the following data with maximum accuracy.

Av I	^	T			
	U		1.5	3	3.5
У	1	0.5	-1	7	8.2

b A series RL circuit with $R = 50 \Omega$ and L = 10 H has a voltage $V = 150 \sin 1000t$ is applied at t = 0 by the closing of a switch. The differential equation to represent the system is given as $Ri + L\frac{di}{dt} = V$. Find the current at $t = 1 \sec t$ taking t = 0.5 using fourth order Runga Kutta method.

TURN OVER

SE Electrical IV CBSGS 28-12-16

Q.P. Code: 544100

- Obtain the roots of following systems of equations using N-R method $f(x,y)=x^2+xy-10$ 4 and $g(x,y)=y+3xy^2-57$ with the initial guesses as $x_0=1.5$ and $y_0=3.5$. Do only two iterations.
 - Solve the following LP problem using Simplex method.

10

10

Maximize Z = 3x + 2ysubject to: $2x + y \le 18$

 $2x + 3y \le 42$

 $3x + y \le 24$

 $x \ge 0, y \ge 0$

a What is LU decomposition? What is the advantage of solving a set of linear algebraic equations using LU decomposition? Calculate the LU decomposition of

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 8 & 5 \end{bmatrix}$$
. $A = \begin{bmatrix} 1 & 11 & 4 \end{bmatrix}$

- A firm is engaged in producing two products. A and B. Each unit of product A requires 2 kg of raw material and 4 labour hours for processing, whereas each unit of B requires 3 kg of raw materials and 3 labour hours for the same type. Every week, the firm has an availability of 60 kg of raw material and 96 labour hours. One unit of product A sold yields Rs.40 and one unit of product B sold gives Rs.35 as profit. Formulate this as a Linear Programming Problem and determine how many units of each of the products should be produced per week so that the firm can earn maximum profit using graphical method.
- What are the different type of errors in numerical computation? How these errors are 6 10 propogated under addition and multiplication?
 - Explain suitable techniques to solve the following optimization problem.

10

- 1. Multivariable optimization problem with no constraint.
- 2. Multivariable optimization problem with equality constraint.