QP Code: 5517

(3 Hours)

[Total Marks: 80

N.B.:

- Question No. 1 is compulsory.
- Answer any three from the remaining five questions.
- Assume suitable data if necessary and justify the same.
- Figures to the right indicate the marks.
- Each question carry 5 marks
 - Define the following:
 - True error and Approximate error (i)
 - (ii) Absolute error and Relative error
 - Write the algorithm for computing a simple root of an equation f(x)=0 using bisection method.
 - Write the formula to calculate error in interpolation. Write any one method to reduce it.
 - Compare Picard's method with Runga Kutta method for solving a differential equation.
- Give the algorithm for secant Method. Find the root of cos(x)=3x-1 using secant method with initial guesses of $x_{i-1} = 1$ and $x_i=2$ and iterate till the relative error is less than 0.5%.
 - Solve the following system of equations using LU decomposition.

$$3x_1 - 0.1 x_2 - 0.2x_3 = 7.85$$

$$0.1x_1 + 7x_2 - 0.3x_3 = -19.3$$

$$0.3x_1 - 0.2x_2 + 10x_3 = 71.4$$

[TURN OVER

20

10

10

10

What is meant by curve fitting with sinusoidal function? Find a sinusoidal function that fits the temperature of a city for 6 months with the following data. Use this data to find the mean, amplitude and time of maximum temperature.

Month	1	2	3	4	5	6
Temperature	21°c	6°c	10°c	28°c	44°c	40°c

b Solve the following NLPP using Kuhn Tucker Method

 $Max Z = 10x_1 + 10x_2 - x_1^2 - x_2^2$ subjected to $x_1 + x_2 \le 8$, $-x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

4 a Solve the following differential equations using fourth order Runga Kutta 10 method for t=1 Given the initial condition when t=0 as, y(0)=1, z(0)=2 and step size h=1.

 $\frac{dy}{dt} = z; \ \frac{dz}{dt} = -z + \sin(ty);$

b What do you understand by extrapolation and interpolation? What are the various methods for interpolation? Using Newton's Divided difference method of order '3' find 'y' at x =2.5 from the following data with maximum accuracy.

X	0	1.5	2	3	3.5
У	1	-1.625	-1	7	15.875

What are the necessary conditions for solving multivariable optimization 10 using Lagrange's Multiplier. Solve the following optimization problem using Lagrange's Multiplier.

Optimize $Z = 7x_1 - 0.3x_1^2 + 8x_2 - 0.4x_2^2$ subjected to $4x_1 + 5x_2 = 100$, $x_1, x_2 \ge 0$.

[TURN OVER

b Define Feasible solution and Optimal feasible solution.

Solve the following LPP and identify the Feasible & Optimal feasible region graphically.

10

 $Max Z = 40x_1 + 50x_2$ $subjected to 3 x_1 + x_2 \le 9$ $x_1 + 2x_2 \le 8$ $x_1, x_2 \ge 0$

TOP

6 a Solve the following LP problem using simplex method.

10

 $\begin{aligned} \min Z &= -3x_1 - 2x_2\\ subjected to & x_1 - x_2 \le 1\\ -3x_1 + 2x_2 \ge -6\\ & x_1, x_2 \ge 0 \end{aligned}$

Explain what is meant by multi step method to solve differential equation? 10 What is the advantage of this method over single step method? Use Adam Bashforth's method to solve $\frac{dy}{dx} = 4e^{0.8x} - 0.5y$ in the interval (-3, 1) with a step size of 1. Do only two iterations. The previous values of x and y are given in the following table.