10,6.10 | QP Code: NP-19827 | 7 | |---|-------| | (3 Hours) [Total Marks: 80 | | | N.B. (1) Question No. 1 is compulsory. (2) Solve any three from remaining questions. (3) Assume suitable data wherever necessary. | | | (a) Draw the block diagram of op-amp and explain function of each block. (b) Define following terms w.r.t. op-amp (i) CMRR (ii) Slew rate. | 4 | | (c) Explain terms line regulation, load regulation and dropout voltage for linear IC regulators. (d) Convert (i) (8A9·B4)₁₆ to Binary (ii) (615·25)₈ to Hexadecimal. | 4 | | (e) (i) List application of Flip-flops (ii) What are basic types of shift registors in terms of data movement. | 4 | | (a) Explain with waveform working of a positive clipper circuit. (b) Explain working of Schmitt triger along with waveforms. Also derive the equations for trigger point voltages. | 4 | | (c) (i) Draw circuit diagram for op-amp as inverting summing amplifier and derive equation for output voltage. (ii) Draw and explain operation of half wave precision rectifier. | 8 | | (a) Explain voltage to current converter with grounded load. (b) Design a first order low pass filter for cut-cit frequency of 2 KHz and pass band gain of 2. Draw circuit diagram and plot the frequency response. (c) Explain IC 555 as monostable multivibrator. | 8 | | 4. (a) Op-amp is configured as integrator. Draw output waveforms when input to the circuit is— (i) Square wave (ii) Sine wave (b) Give the specifications of digital IC. | 4 | | (c) Explain dual slope analog to digital conventor | 4 | | (d) Design two bit magnitude comparator and implimernt using logic gates. 5. (a) Simplify using Boolean laws— | 8 | | $AB + \overline{AC} + A\overline{BC} (AB + C)$ | 4 | | (b) Minimize the given function using k-maps and realize using universal gates. f(A, B, C, D) = Σm(0, 1, 2, 3, 5, 7, 8, 9, 11, 14) (c) (i) Explain in short hazads in combinational circuits. | 8 | | in This lement using 8: 1 multiplexer
j(A, B, C, D) = 0, 2, 3, 6, 8, 9, 12, 14) | 8 | | 6. (a) Write note on interfacing between TTL and CMOS logic families. (b) Convert SR flipflop to JK flip-flop. (c) State differences between synchronous and asynchronous counters. (d) Design a mod-5 synchronous counter using JK flip-flop and implement it. Draw timing diagram. | 1 1 3 | | | |