Q.P.Code: 25661

FT. 2 II	[N 1 - 1 - 2 . 0 O
[Time: 3 Hours]	[Marks:80]
L	

Instructions: 1) Question No. 1 is compulsory.

- 2) Answer any three from remaining five.
- 3) Assume data where ever needed.

1	a)	Answer any four State and prove Demorgans theorem.	5
	b)	Explain in brief CMRR, slew rate.	5
	c)	Convert following (i) 101101 to gray code (ii) (CD8.4) ₁₆ to octal	5
	d)	Convert SR to JK flip flop.	5
	e)	Explain in brief types of registers.	5
2	a)	Explain 555 timer working as astable multivibrator.	10
	b)	Explain first order low pass filter. Design a low pass filter at a cut off frequency of 1kHz with a pass band gain of 2. Also plot the frequency response curve. Assume $C=0.01\mu F$.	10
3	a)	Design a mod-5 synchronous counter using JK flip flop without lockout.	10
	b)	Minimize the expression using K map and implement using NAND gates only. $F = \Sigma(0,5,9,12,13,14,15) + d(1,2,3,4)$	10
4	a)	Explain successive approximation type ADC.	10
	b)	Explain TTL logic families.	10
5	a)	Implement following expression using (i) 8:1 Mux (ii) 4:1 Mux $F(A,B,C) = \Sigma(0,2,5,6,7)$	10
6	b) a) b)	Explain ideal and practical differentiator. Design and implement 3bit gray to binary code converter. Explain Schmitt trigger with necessary waveforms.	10 10 10