S.E. Electrical IV CBSGS QP Code: 544003 ADIC

(3 Hours)

[Total Marks:80

N.I	B.:	 Question No.1 is compulsory. Answer any three from remaining five. Assume suitable data whereever necessary and justify the same. 	
	Solv (a (b (c (d (e	What are advantages of adjustable voltage regulators over the fixed voltage regulators? Explain interfacing of CMOS and TTL logic families. What is meant by race around condition in flip-flops?	5 5 5 5 5
2	(a)	Explain the operation of monostable multiviolator using ic 333. Draw the	10
티	2 20	circuit diagram and waveforms. Explain with the help of circuit diagram the operation of an op-amp as non-inverting amplifier. Derive expression for the voltage gain of this amplifier.	10
3	(a)	Derive the filter gain of first order low pass filter and draw its frequency	10
	(b)	response characteristics. Minimize the expression using K map and implement using gates. $f= \sum m \ (0,1,3,4,5,6,7,13,15)$	10
4	(a) (b)	With the help of neat diagram explain the operation of any one type of DAC. Explain implementation of full adder circuit using two half adders along with truth table.	10 10
5	(a)	(i) Realize the X-OR function using NAND logic.(ii) Simplify the following Boolean expression	10
	(b)	(i) Use 4:1 Mux to Implement the logic expression $F(A,B,C) = \sum_{i} m(1,2,4,7)$ (ii) Convert S-R flip-flop to J-K flip-flop.	10
6	(a) (b)	Design a 3-bit synchronous counter using J-K flip-flops. With neat circuit diagram and waveforms explain operation of Schmitt trigger using op-amp.	10