SE-ELECTRICAL-SEM3 HOV. 2013

Applied mathematics III

29/11/2013

5

Ash5-D:\Data-44

Con. 7885-13.

GX-12071

(3 Hours)

[Total Marks: 80

N.B. :(1) Question no. 1 is compulsory.

- (2) Attempt any three questions out of the remaining five questions.
- (3) Figures to right indicate Full marks.
- 1. (a) Prove that real and imaginary parts of an analytic function F(z) u + iv are 5 harmonic function.
 - (b) Find fourier series for $f(x) = |\sin x|$ in $(-\Pi, \Pi)$.
 - (c) Find the Laplace transform of Jue^{-3u} sin 4udu
 - (d) If $\vec{F} = xye^{2z} \hat{i} + xy^2 \cos z \hat{j} + x^2 \cos xy \hat{k}$, find div \vec{F} and curl \vec{F} .
- 2. (a) Using Laplace transform, solve:- $(x^2 + 3D + 2)y = e^{-2t} \sin t$ where y(0) = 0, y'(0) = 0.
 - (b) Find the directional derivative of $\mathbf{f} = x^2 y \cos z$ at $(1, 2, \frac{\Pi}{2})$ in the direction of 6 $\bar{a} = 2\hat{i} + 3\hat{j} + 2\hat{k}$
 - (c) Find the fouries series expansion for $F(x) = \sqrt{1 \cos x}$ in $(0, 2\Pi)$, Hence deduce 8 that $\frac{1}{2} = \sum \frac{1}{4^{n^2} 1}$.
- 3. (a) Prove the $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\Pi x}} \left\{ \frac{\sin x}{x} \cos x \right\}$.
 - (b) Evaluate by green's theorem, $\oint_C (x^2ydx + y^3dy)$ Where C is the closed path formed 6 by y = x, $y = x^2$
 - (c) (i) Find Laplace transform of cosbt cosat t

Con. 7885-GX-12071-13.

Find Laplace transform of :- $\frac{d}{dt} \left[\frac{\sin t}{t} \right]$

- (a) Show the set of functions $\{\sin x, \sin 3x....\}$ $\{\sin(2n+1)x : n = 0, 1, 2, \dots\}$ is orthogonal over $[0, \frac{\Pi}{2}]$, Hence construct orthonormal set of functions.
 - Find the imaginary part whose real part is $u = x^3 3xy^2 + 3x^2 3y^2 + 1$ (b)
 - Find inverse Laplace transform of :-(c)

(i) $\log \left(\frac{s^2 + 4}{s^2 + 9} \right)$

(ii) $\frac{s}{(s^2+4)(s^2+9)}$

6

Obtain half range sine series for $f(x) = x^2$ in 0 < x < 3.

- A vector field \vec{F} is given by $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ is irrotational and Hence find scalar point function ϕ such that $\overline{F} = \nabla \phi$
- Show that the function V = ex (xsiny + ycosy) satisfies Laplace equation and (c) find its corresponding analytic function and its harmonic conjugate.
- 8

6

- By using stoke's theorem, evaluate $\oint \left[(x^2 + y^2)\hat{i} + (x^2 y^2)\hat{j} \right] d\vec{r}$ where 'C' is the . 6. (a) boundary of the region enclosed by circles $x^2 + y^2 = 4$, $x^2 + y^2 = 16$.
 - Show that under the transformation $w = \frac{5-4z}{4z-2}$ the circle |z| = 1 in the z-plane (b) is transformed into a circle of unity in the w-plane.
 - Prove that $\int J_3(x) dx = \frac{-2J_1(x)}{x} J_2(x)$.

8