## S.E. Electrical III CBGS EDC

QP Code: 30548

[3 hrs]

Total Marks: 80

12.5-16

## Instructions:

- 1. Question No: 1 is compulsory.
- 2. Answer any three from the remaining five questions.
- 3. Answers to questions should be grouped and written together.

1

- Draw the block diagram of a DC power supply system and explain the terms a) rectification efficiency b) ripple factor c) PIV.
- State the advantages of negative feedback. b)
- Compare RC and LC oscillators. c)
- Explain with V-I characteristics the working principle of a Schottkey diode. d)
- (08)2 Explain the Barkhausen Criteria of Oscillations. Draw the hybrid equivalent model of voltage divider bias CE amplifier with
  - RE bypassed and derive the expression for voltage gain and input impedance. (12)
- Draw the small signal equivalent circuit of an n-channel JFET amplifier with (10)3 Rs bypassed and un bypassed and derive the expression of voltage gain in each case.
  - Find the voltage gain of a two stage cascaded JFET amplifier with the (10)following parameters.  $V_{DD} = 20V$ ,  $R_{G1} = R_{G2} = 3.3M\Omega$ ,  $R_{D1} = R_{D2} = 2.4K\Omega$ ,  $R_{S1} = R_{S2} = 680\Omega$ ,  $I_{DSS} = 10 \text{mA}, V_P = -4 \text{V}.$
- Explain the different thermal compensation techniques in BJT amplifiers (08)
  - State and draw each topology of negative feedback and explain the effect on i/p impedance, o/p impedance and voltage gain for Current Series Negative (12)Feedback.
- Draw the circuit diagram of dual input balanced output (DIBO) differential (10)5 amplifier and derive the relevant AC parameters.
  - Derive the equation for frequency of oscillation of RC phase shift oscillator using (10)b) JJET as basic amplifier. Derive the condition of oscillation.
- Draw neat diagram of UJT relaxation oscillator. Explain its operation. Derive (10)6 the expression for frequency of output signal. Draw various waveforms.
  - What is Datlington configuration? Derive the expression of voltage gain of (10)Darlington pair emitter follower.