SEM-IV COMP (CBSGS) 6/6/16 Theoretical Computer Science QP Code:541700

	(3 Hours) Total Marks	:80
N.E	3.: (1) Question No. 1 is compulsory.	
	(2) Attempt any three questions out of remaining five questions.(3) Assumptions made should be clearly stated.	
	(4) Figure to the right indicate full marks.	
	(5) Assume suitable data whenever required but justify that.	
l.	(a) Explain post correspondence problem.	5
	(b) Differentiate between NFA and DFA.	5
	(c) Show that language $L = \{0^i i \text{ is prime number}\}$ is not regular	5 5
	(d) Compare recursive and recursively enumerable languages.	J
2.	(a) Design the DFA to accept all the binary strings over $\Sigma = \{0,1\}$ that are beginning	10
	with 1 and having its decimal value multiple of 5.	
	(b) Design DPDA to accept language $L = \{x \in \{a,b\}^* \mid N_a(x) > N_b(x)\}.$	10
	$N_a(x) > N_b(x)$ means number of a's are greater than number of b's in string x.	
3	(a) Explain variations and equivalence of Turing machine.	10
	(b) State and prove pumping lemma for context free languages.	10
4	(a) Design mealy machine to find out 2's complement of a binary number.	10
••	(b) Convert the following NFA to an equivalent DFA	10
	State a b ∈	
	$\rightarrow q_0 \qquad \{q_0, q_1\} \qquad \{q_1\}$	
	q_1 $\{q_2\}$ $\{q_1, q_2\}$ $\{\}$	
	$\mathbf{q}_{\mathbf{q}}$ $\mathbf{q}_{\mathbf{q}}$ $\mathbf{q}_{\mathbf{q}}$	
		4 A
5.	(a) Consider the following grammar $G = (V, T, P,S)$, $V = \{S, X\}$, $T = \{a,b\}$	10
	and productions Pare	
	$S \rightarrow aSb \mid aX$	
	$X \rightarrow Xa \mid Sa \mid a$	
	Convert this grammar in Greibach Normal Form (GNF).	
	(b) State and prove Rice's theorem.	10
6.	(a) Design a Tuning machine as an acceptor for the language	1.0
	$\left\{a^nb^m\mid n\ ,\ m\ \geq\ 0\ and\ m\geq\ n\right\}$	10
	(b) Design PDA to check even parentheses over $\Sigma = \{0,1\}$	10
· · ·		