S	Paper / Subject Code: 38905 / THEORETICAL COMPUTER SCIENCE S.E. SEM IV / COMP / CREDIT BASE / NOV 2018 / 14.12.2018 [Total Marks: 80]	
N.E		
1.	(a) Write short note on Myhill Nerode theorem	5
	(b) Differentiate between NFA and DFA.	5
	(c) State and explain Closure properties of Context Free Language	5
	(d) Explain Post Correspondence problem.	5
2.	(a) Construct the NFA- ϵ	
	i for the language in which strings starts and ends different letter over the set $\Sigma = \{a, b\}$	
	ii) for the R.E (01+2*)	10
	(b) Give and Explain formal definition of Pumping Lemma for Regular Language and	10
	prove that following language is not regular.	
	$L=\{ a^nb^m 1 \le n \le m \}$	
3.	(a) Convert the given grammar into Griebach Normal Form	10
	S -> aSB aA	
	A -> Aa Sa a	
	(b) Construct PDA for a language $L=\{wcw^R \mid w \in \{a,b\} \text{ and } w^R \text{ is reverse of } w\}$	10
4.	(a) Construct TM to check palindrome over $\Sigma = \{0,1\}$	10
	(b) Design a DFA which accepts all strings not having more than 2 a's over $\Sigma = \{a, b\}$	10
5.	(a) Convert $(0+1)(01)^*(0+\epsilon)$ into NFA with ϵ -moves and obtain DFA.	10
	(b) Design Mealy Machine that accepts an input from (0+1)* if the input ends in 101,	10
	output A; if the input ends in 110, output B, otherwise C. then convert into Moore Machine.	
6.	(a) Draw a parse tree for the string "abaaba" for the CFG given by G where	10
	$P = \{ S \rightarrow aSa \}$	
	S -> bSb	
	$S \rightarrow a b \epsilon $.	
	Also Determine whether the given CFG is ambiguous or not.	
	(b) Write short note on following	10
	i) Halting problem	
	ii) Rice's Theorem	