Sem-IV/COMP/CBGS/TCS/@NOV-7016 Theoretical comp. science

21-12-16 (3 Hours) QP Code:541703

[Total Marks:80

N.B.: (1) Question No. 1 is compulsory

- (2) Attempt any three questions from remaining questions
- (3) Draw suitable diagrams wherever necessary
- (4) Assume suitable data, if necessary.

5

- 1. (a) Design a DFA over an alphabet $\Sigma = \{a, b\}$ to recognize a language in which 5 every 'a' is followed by 'b'.
 - (b) Give formal definition of a Push Down Automata.
 - (c) State and explain the power and limitations of a Turing machine 5
 - (d) Design a mealy machine to determine the residue mod 3 of a binary number. 5
- 2. (a) Convert the following NFA to an equivalent DFA

 State

 a

 b

 ε

State	a	b	3
$\rightarrow q_0$	$\{q_0, q_1\}$	q_1	{}
q_1	$\{q_2\}$	$\{q_1,q_2\}$	{}
*q ₂	$\{q_0\}$	$\{q_2\}$	$\{q_1\}$

- (b) State and explain pumping lemma for regular languages. Using pumping lemma 10 prove that the language $L = \left\{0^n 1^n \mid n \ge 0\right\}$ is not regular.
- 3. (a) Design a Turing machine that computes a function f(m,n) = m + n i.e. addition 10 of two integers
 - (b) Design a Turing machine to accept the language 0ⁿ1ⁿ2ⁿ
- 4. (a) Draw a state diagram and construct a regular expression corresponding to 10 the following state transition table.

State	0	1
$\rightarrow *q_1$	q_1	q_2
\dot{q}_2	q_3	q_2
q_3	q_1	q_2

(b) State and explain decision properties of regular languages

10

20

- (i) Convert the following CFG to GNF S→AA|a
 A→SS | b
 - (b) Design a PDA corresponding to the grammar $S \to aSA \mid \epsilon$ $A \! \to bB$

 $B \rightarrow b$

6. Write detailed notes on (any two):-

- (a) Recursive and Recursively Enumerable Languages.
- (b) Chomsky Hierarchy
- (c) Rice's Theorem
- (d) Halting problem