Sem-IV/ comp/CBGS/ C.G/NOV-16/28-12-16

Computer Graphics E. : Que Q. P.Code: 541800

Duration: 3 Hours Total Marks assignment			ned: 80	
N.	B.: (1)	Question No. 1 is compulsory.		
	- S.J	Attempt any three of remaining five questions.	4	
	(3	Assume any suitable data if necessary and clearly state it.	1	
1.	(a)	What is aliasing? Explain any two anti-aliasing techniques.	[05]	
	(b)	Explain OpenGL basic primitives.	[05]	
	(c)	Show that the composition of two successive rotation are additive i.e. $R(\theta 1) \cdot R(\theta 2) = R(\theta 1 + \theta 2)$	[05]	
	(d)	What is the purpose of Inside-Outside Tests? Explain with an example.	[05]	
2.	(a)	Write the mid-point circle drawing algorithm. Using mid-point circle algorithm Plot the circle whose radius = 10 units.	[10]	
	(b)	Apply the Cohen – Sutherland line clipping algorithm to clip the line with coordinates (30, 60) and (60, 25) against the window with (Xwrain, Ywmin) = (10, 10) and (Xwmax, Ywmax) = (50, 50)	[10]	
3.	(a)	Explain Weiler-Atherton polygon clipping algorithm in detail.	[10]	
	(b)	Explain Back Surface detection method in detail with an example.	[10]	
4.	(a)	Explain and compare Goraud Shading and Phong Shading.	[10]	
	(b)	What are Parallel and Perspective projections and derive the matrix for perspective projection.	[10]	
5.	(a)	Derive the matrix that represents scaling of an object with respect to any fixed	[10]	
		point? Use that matrix to find P^1 for the given point $P(6, 8)$, $Sx = 2$, $Sy = 3$ and fixed point $(2, 2)$.		
	(b)	Explain the properties of Bezier curves	[10]	
6.	4	Write a short note on any two of the following	[20]	
	(a)	Comparison of 3D object representation methods		
-	(b)	Construction of Koch curve		
1	(c)	Halftone and Dithering techniques		
-	0			