QP Code: 30745

(3 Hours)

[Total Marks:80

N.B.: (1) Question no. 1 is compulsory.

- (2) Attempt any three questions from the remaining five questions.
- (3) All questions carry equal marks as indicated by figures to the right.
- (4) Assumptions made should be clearly stated.
- 1. (a) Find how many integers between 1 and 60 are not divisible by 2 nor by 3 and nor 6 by 5 respectively.
 - (b) By using mathematical induction prove that $1 + a + a^2 +a^n = \frac{1 a^{n+1}}{1 a}$, where 6
 - (c) Let $A=\{1,2,3,4,5\}$ and R be the relation defined by a R b if and only if a < b. Compute 8 R, R^2 and R^3 . Draw digraph of R, R^2 and R^3 .
- 2. (a) Show that a group G is Ablian, if and only if $(ab)^2 = a^2 b^2$ for all elements a and 6 b in G.
 - (b) Let A={1,2,3,4,6}=B,a R b if and only if a is multiple of b. Find R. Find each of 6 the Following (i) R(4) (ii) R(G) (iii) R({2,4,6}).
 - (c) Show that the (2,5)encoding function e: $B^2 oup B^5$ defined by e (00) = 00000 8 e (01) = 01110 e (10) = 10101 e (11) = 11011is a group code. How many errors will it detect and correct?
- 3. (a) State pigeon hole and extended pigeon hole principle. Show that 7 colors are used 6 to paint 50 bicycles, at least 8 bicycle will be of same color.
 - (b) Define distributive lattice .Show that in a bounded distributive lattice, if a 6 complement exists, its unique.
 - (c) Functions f,g, h are defined on a set, $X = \{1,2,3\}$ as $f = \{(1,2),(2,3),(3,1)\}$ $g = \{(1,2),(2,1),(3,3)\}$ $h = \{(1,1),(2,2),(3,1)\}$ (i) Find f o g, g o f are they equal? (ii) Find f o g o h and f o h o g
- 4. (a) Define Eular path and Eular circuit, determine whether the given graph has Eular 6 path and Eular circuit.

[TURN OVER

6

(b) Define Hamiltonian path and Hamiltonian circuit, determine whether the given graph has Hamiltonian path and Hamiltonian circuit.

(c) Define isomorphic graphs. Show that the following two graphs are isomorphic. 8

- 5. (a) What is an Universal and existential quantifiers? Prove the distribution law. 6 $(p \lor q \land r) \equiv (p \lor q) \land (p \lor r)$
 - (b) Let A={1,2,3,4} and let R={(1,2) (2,3)(3,4)(2,1)} Find transitive closure of R by using Warshall's algorithm.

 8
 - (c) Prove that the set $A=\{0,1,2,3,4,5\}$ is a finite Abelian group under addition modulo 6.
- 6. (a) Find the ordinary generating functions for the given sequences:

 (i){1, 2, 3, 4, 5 ---} (ii) {2,2,2,2 ----}(iii) {1,1,1,1----}
 - (b) Define group, monoid, semigroup.
 - (c) Solve the following recurrence relation: $a_n 7a_{n-1} + 10$ $a_{n-2} = 0$ with initial condition $a_0 = 1$, $a_2 = 6$